File size: 6,984 Bytes
bc870ea
 
 
 
 
 
ed52ef5
bc870ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed52ef5
 
bc870ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed52ef5
bc870ea
 
 
 
 
 
ed52ef5
 
bc870ea
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
# ZenCtrl Inpainting Playground (Baseten backend)

import os, json, base64, requests
from io import BytesIO
from PIL import Image, ImageDraw
import gradio as gr

# ────────── Secrets & endpoints ──────────
BASETEN_MODEL_URL = "https://app.baseten.co/models/YOUR_MODEL_ID/predict" 
BASETEN_API_KEY = os.getenv("BASETEN_API_KEY")
REPLICATE_TOKEN = os.getenv("REPLICATE_API_TOKEN")

from florence_sam.detect_and_segment import fill_detected_bboxes

# ────────── Globals ──────────
ADAPTER_NAME = "inpaint"
ADAPTER_SIZE = 1024
model_config = dict(union_cond_attn=True, add_cond_attn=False,
                    latent_lora=False, independent_condition=False)
css = "#col-container {margin:0 auto; max-width:960px;}"

#Background prompt via Replicate 
def _gen_bg(prompt: str):
    url = replicate.run(
        "google/imagen-4-fast",
        input={"prompt": prompt or "cinematic background", "aspect_ratio": "1:1"},
    )
    url = url[0] if isinstance(url, list) else url
    return Image.open(BytesIO(requests.get(url, timeout=120).content)).convert("RGB")

# Core generation
def process_image_and_text(subject_image, adapter_dict, prompt, use_detect, detect_prompt, size=ADAPTER_SIZE, rank=10.0):
    seed, guidance_scale, steps = 42, 2.5, 28

    if use_detect:
        base_img = adapter_dict["image"] if isinstance(adapter_dict, dict) else adapter_dict
        if base_img is None:
            raise gr.Error("Upload a background image first.")
        adapter_image, _ = fill_detected_bboxes(
            image=base_img, text=detect_prompt,
            inflate_pct=0.15, fill_color="#00FF00"
        )
    else:
        adapter_image = adapter_dict["image"] if isinstance(adapter_dict, dict) else adapter_dict
        if isinstance(adapter_dict, dict) and adapter_dict.get("mask") is not None:
            m = adapter_dict["mask"].convert("L").point(lambda p: 255 if p else 0)
            if bbox := m.getbbox():
                rect = Image.new("L", m.size, 0)
                ImageDraw.Draw(rect).rectangle(bbox, fill=255)
                m = rect
            green = Image.new("RGB", adapter_image.size, "#00FF00")
            adapter_image = Image.composite(green, adapter_image, m)

    def prep(img: Image.Image):
        w, h = img.size
        m = min(w, h)
        return img.crop(((w-m)//2, (h-m)//2, (w+m)//2, (h+m)//2)).resize((size, size), Image.LANCZOS)

    subj_proc = prep(subject_image)
    adap_proc = prep(adapter_image)

    def b64(img):
        buf = BytesIO(); img.save(buf, format="PNG")
        return base64.b64encode(buf.getvalue()).decode()

    payload = {
        "prompt": prompt,
        "subject_image": b64(subj_proc),
        "adapter_image": b64(adap_proc),
        "height": size, "width": size,
        "steps": steps, "seed": seed,
        "guidance_scale": guidance_scale, "rank": rank,
    }

    headers = {"Content-Type": "application/json"}
    if BASETEN_API_KEY:
        headers["Authorization"] = f"Api-Key {BASETEN_API_KEY}"

    resp = requests.post(BASETEN_MODEL_URL, headers=headers, json=payload, timeout=120)
    resp.raise_for_status()

    if resp.headers.get("content-type", "").startswith("image/"):
        raw_img = Image.open(BytesIO(resp.content))
    else:
        url = resp.json().get("image_url")
        if not url:
            raise gr.Error("Baseten response missing image data.")
        raw_img = Image.open(BytesIO(requests.get(url, timeout=120).content))

    return [[raw_img]], raw_img

# ────────── Header HTML ──────────
header_html = """
<h1>ZenCtrl Inpainting</h1>
<div align="center" style="line-height:1;">
  <a href="https://discord.com/invite/b9RuYQ3F8k" target="_blank" style="margin:10px;">
    <img src="https://img.shields.io/badge/Discord-Join-7289da.svg?logo=discord" alt="Discord">
  </a>
  <a href="https://fotographer.ai/zen-control" target="_blank" style="margin:10px;">
    <img src="https://img.shields.io/badge/Website-Landing_Page-blue" alt="LP">
  </a>
  <a href="https://x.com/FotographerAI" target="_blank" style="margin:10px;">
    <img src="https://img.shields.io/twitter/follow/FotographerAI?style=social" alt="X">
  </a>
</div>
"""

# ────────── Gradio UI ──────────
with gr.Blocks(css=css, title="ZenCtrl Playground") as demo:
    raw_state = gr.State()

    gr.HTML(header_html)
    gr.Markdown("""
**Generate context-aware images of your subject with ZenCtrl’s inpainting playground.**  
Upload a subject + optional mask, write a prompt, and hit **Generate**.  
Open *Advanced Settings* to fetch an AI-generated background.
""")

    with gr.Row():
        with gr.Column(scale=2, elem_id="col-container"):
            subj_img = gr.Image(type="pil", label="Subject image")
            ref_img  = gr.Image(type="pil", label="Background / Mask image", tool="sketch", brush_color="#00FF00", sources=["upload", "clipboard"])
            use_detect_ck = gr.Checkbox(False, label="Detect with Florence-SAM")
            detect_box    = gr.Textbox(label="Detection prompt", value="person, chair", visible=False)
            promptbox     = gr.Textbox(label="Generation prompt", value="furniture", lines=2)
            run_btn       = gr.Button("Generate", variant="primary")

            with gr.Accordion("Advanced Settings", open=False):
                bgprompt = gr.Textbox(label="Background Prompt", value="Scandinavian living room …")
                bg_btn   = gr.Button("Generate BG")

        with gr.Column(scale=2):
            gallery = gr.Gallery(columns=[1], rows=[1], object_fit="contain", height="auto")
            bg_img  = gr.Image(label="Background", visible=False)

    gr.Examples(
        examples=[
            ["examples/subject1.png", "examples/bg1.png", "Make the toy sit on a marble table", "examples/out1.png"],
            ["examples/subject2.png", "examples/bg2.png", "Turn the flowers into sunflowers", "examples/out2.png"],
            ["examples/subject3.png", "examples/bg3.png", "Make this monster ride a skateboard on the beach", "examples/out3.png"],
            ["examples/subject4.png", "examples/bg4.png", "Make this cat happy", "examples/out4.png"],
        ],
        inputs=[subj_img, ref_img, promptbox],
        outputs=[gallery],
        fn=process_image_and_text,
        examples_per_page="all",
        label="Presets (Input Β· Background Β· Prompt Β· Output)",
        cache_examples="lazy"
    )

    run_btn.click(
        process_image_and_text,
        inputs=[subj_img, ref_img, promptbox, use_detect_ck, detect_box],
        outputs=[gallery, raw_state]
    )

    bg_btn.click(_gen_bg, inputs=[bgprompt], outputs=[bg_img])
    use_detect_ck.change(lambda v: gr.update(visible=v), inputs=use_detect_ck, outputs=detect_box)

# ────────── Launch ──────────
demo.launch(show_api=False, share=True)