Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import sys | |
| import subprocess | |
| import spaces | |
| import torch | |
| import gradio as gr | |
| from typing import Sequence, Mapping, Any, Union | |
| from examples_db import ZEN_EXAMPLES | |
| from PIL import Image, ImageChops | |
| from huggingface_hub import hf_hub_download | |
| # Setup ComfyUI if not already set up | |
| # if not os.path.exists("ComfyUI"): | |
| # print("Setting up ComfyUI...") | |
| # subprocess.run(["bash", "setup_comfyui.sh"], check=True) | |
| # Ensure the output directory exists | |
| os.makedirs("output", exist_ok=True) | |
| # Download models if not already present | |
| print("Checking and downloading models...") | |
| hf_hub_download( | |
| repo_id="black-forest-labs/FLUX.1-Redux-dev", | |
| filename="flux1-redux-dev.safetensors", | |
| local_dir="models/style_models", | |
| ) | |
| hf_hub_download( | |
| repo_id="black-forest-labs/FLUX.1-Depth-dev", | |
| filename="flux1-depth-dev.safetensors", | |
| local_dir="models/diffusion_models", | |
| ) | |
| hf_hub_download( | |
| repo_id="black-forest-labs/FLUX.1-Canny-dev", | |
| filename="flux1-canny-dev.safetensors", | |
| local_dir="models/controlnet", | |
| ) | |
| hf_hub_download( | |
| repo_id="XLabs-AI/flux-controlnet-collections", | |
| filename="flux-canny-controlnet-v3.safetensors", | |
| local_dir="models/controlnet", | |
| ) | |
| hf_hub_download( | |
| repo_id="Comfy-Org/sigclip_vision_384", | |
| filename="sigclip_vision_patch14_384.safetensors", | |
| local_dir="models/clip_vision", | |
| ) | |
| hf_hub_download( | |
| repo_id="Kijai/DepthAnythingV2-safetensors", | |
| filename="depth_anything_v2_vitl_fp32.safetensors", | |
| local_dir="models/depthanything", | |
| ) | |
| hf_hub_download( | |
| repo_id="black-forest-labs/FLUX.1-dev", | |
| filename="ae.safetensors", | |
| local_dir="models/vae/FLUX1", | |
| ) | |
| hf_hub_download( | |
| repo_id="comfyanonymous/flux_text_encoders", | |
| filename="clip_l.safetensors", | |
| local_dir="models/text_encoders", | |
| ) | |
| t5_path = hf_hub_download( | |
| repo_id="comfyanonymous/flux_text_encoders", | |
| filename="t5xxl_fp16.safetensors", | |
| local_dir="models/text_encoders/t5", | |
| ) | |
| # Import required functions and setup ComfyUI path | |
| import folder_paths | |
| def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
| try: | |
| return obj[index] | |
| except KeyError: | |
| return obj["result"][index] | |
| def find_path(name: str, path: str = None) -> str: | |
| if path is None: | |
| path = os.getcwd() | |
| if name in os.listdir(path): | |
| path_name = os.path.join(path, name) | |
| print(f"{name} found: {path_name}") | |
| return path_name | |
| parent_directory = os.path.dirname(path) | |
| if parent_directory == path: | |
| return None | |
| return find_path(name, parent_directory) | |
| def add_comfyui_directory_to_sys_path() -> None: | |
| comfyui_path = find_path("ComfyUI") | |
| if comfyui_path is not None and os.path.isdir(comfyui_path): | |
| sys.path.append(comfyui_path) | |
| print(f"'{comfyui_path}' added to sys.path") | |
| def add_extra_model_paths() -> None: | |
| try: | |
| from main import load_extra_path_config | |
| except ImportError: | |
| from utils.extra_config import load_extra_path_config | |
| extra_model_paths = find_path("extra_model_paths.yaml") | |
| if extra_model_paths is not None: | |
| load_extra_path_config(extra_model_paths) | |
| else: | |
| print("Could not find the extra_model_paths config file.") | |
| # Initialize paths | |
| add_comfyui_directory_to_sys_path() | |
| add_extra_model_paths() | |
| def import_custom_nodes() -> None: | |
| import asyncio | |
| import execution | |
| from nodes import init_extra_nodes | |
| import server | |
| # Create a new event loop if running in a new thread | |
| try: | |
| loop = asyncio.get_event_loop() | |
| except RuntimeError: | |
| loop = asyncio.new_event_loop() | |
| asyncio.set_event_loop(loop) | |
| server_instance = server.PromptServer(loop) | |
| execution.PromptQueue(server_instance) | |
| init_extra_nodes() | |
| # Import all necessary nodes | |
| print("Importing ComfyUI nodes...") | |
| try: | |
| from nodes import ( | |
| StyleModelLoader, | |
| VAEEncode, | |
| NODE_CLASS_MAPPINGS, | |
| LoadImage, | |
| CLIPVisionLoader, | |
| SaveImage, | |
| VAELoader, | |
| CLIPVisionEncode, | |
| DualCLIPLoader, | |
| EmptyLatentImage, | |
| VAEDecode, | |
| UNETLoader, | |
| CLIPTextEncode, | |
| ) | |
| # Initialize all constant nodes and models in global context | |
| import_custom_nodes() | |
| except Exception as e: | |
| print(f"Error importing ComfyUI nodes: {e}") | |
| raise | |
| print("Setting up models...") | |
| # Global variables for preloaded models and constants | |
| intconstant = NODE_CLASS_MAPPINGS["INTConstant"]() | |
| CONST_1024 = intconstant.get_value(value=1024) | |
| # Load CLIP | |
| dualcliploader = DualCLIPLoader() | |
| CLIP_MODEL = dualcliploader.load_clip( | |
| clip_name1="t5/t5xxl_fp16.safetensors", | |
| clip_name2="clip_l.safetensors", | |
| type="flux", | |
| ) | |
| # Load VAE | |
| vaeloader = VAELoader() | |
| VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors") | |
| # Load UNET | |
| unetloader = UNETLoader() | |
| UNET_MODEL = unetloader.load_unet( | |
| unet_name="flux1-depth-dev.safetensors", weight_dtype="default" | |
| ) | |
| # Load CLIP Vision | |
| clipvisionloader = CLIPVisionLoader() | |
| CLIP_VISION_MODEL = clipvisionloader.load_clip( | |
| clip_name="sigclip_vision_patch14_384.safetensors" | |
| ) | |
| # Load Style Model | |
| stylemodelloader = StyleModelLoader() | |
| STYLE_MODEL = stylemodelloader.load_style_model( | |
| style_model_name="flux1-redux-dev.safetensors" | |
| ) | |
| # Initialize samplers | |
| ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() | |
| SAMPLER = ksamplerselect.get_sampler(sampler_name="euler") | |
| # Initialize depth model | |
| cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]() | |
| downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS[ | |
| "DownloadAndLoadDepthAnythingV2Model" | |
| ]() | |
| DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel( | |
| model="depth_anything_v2_vitl_fp32.safetensors" | |
| ) | |
| controlnetloader = NODE_CLASS_MAPPINGS["ControlNetLoader"]() | |
| CANNY_XLABS_MODEL = controlnetloader.load_controlnet( | |
| control_net_name="flux-canny-controlnet-v3.safetensors" | |
| ) | |
| # Initialize nodes | |
| cliptextencode = CLIPTextEncode() | |
| loadimage = LoadImage() | |
| vaeencode = VAEEncode() | |
| fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() | |
| controlNetApplyAdvanced = NODE_CLASS_MAPPINGS["ControlNetApplyAdvanced"]() | |
| instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]() | |
| clipvisionencode = CLIPVisionEncode() | |
| stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]() | |
| emptylatentimage = EmptyLatentImage() | |
| basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() | |
| basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() | |
| randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() | |
| samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() | |
| vaedecode = VAEDecode() | |
| cr_text = NODE_CLASS_MAPPINGS["CR Text"]() | |
| saveimage = SaveImage() | |
| getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]() | |
| depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]() | |
| canny_prossessor = NODE_CLASS_MAPPINGS["Canny"]() | |
| imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]() | |
| from comfy import model_management | |
| model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION_MODEL] | |
| print("Loading models to GPU...") | |
| model_management.load_models_gpu( | |
| [ | |
| loader[0].patcher if hasattr(loader[0], "patcher") else loader[0] | |
| for loader in model_loaders | |
| ] | |
| ) | |
| print("Setup complete!") | |
| def generate_image( | |
| prompt, | |
| structure_image, | |
| style_image, | |
| depth_strength=15, | |
| canny_strength=30, | |
| style_strength=0.5, | |
| steps=28, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| """Main generation function that processes inputs and returns the path to the generated image.""" | |
| timestamp = random.randint(10000, 99999) | |
| output_filename = f"flux_zen_{timestamp}.png" | |
| with torch.inference_mode(): | |
| # Set up CLIP | |
| clip_switch = cr_clip_input_switch.switch( | |
| Input=1, | |
| clip1=get_value_at_index(CLIP_MODEL, 0), | |
| clip2=get_value_at_index(CLIP_MODEL, 0), | |
| ) | |
| # Encode text | |
| text_encoded = cliptextencode.encode( | |
| text=prompt, | |
| clip=get_value_at_index(clip_switch, 0), | |
| ) | |
| empty_text = cliptextencode.encode( | |
| text="", | |
| clip=get_value_at_index(clip_switch, 0), | |
| ) | |
| # Process structure image | |
| structure_img = loadimage.load_image(image=structure_image) | |
| # Resize image | |
| resized_img = imageresize.execute( | |
| width=get_value_at_index(CONST_1024, 0), | |
| height=get_value_at_index(CONST_1024, 0), | |
| interpolation="bicubic", | |
| method="keep proportion", | |
| condition="always", | |
| multiple_of=16, | |
| image=get_value_at_index(structure_img, 0), | |
| ) | |
| # Get image size | |
| size_info = getimagesizeandcount.getsize( | |
| image=get_value_at_index(resized_img, 0) | |
| ) | |
| # Encode VAE | |
| vae_encoded = vaeencode.encode( | |
| pixels=get_value_at_index(size_info, 0), | |
| vae=get_value_at_index(VAE_MODEL, 0), | |
| ) | |
| # Process canny | |
| canny_processed = canny_prossessor.detect_edge( | |
| image=get_value_at_index(size_info, 0), | |
| low_threshold=0.4, | |
| high_threshold=0.8, | |
| ) | |
| # Apply canny Advanced | |
| canny_conditions = controlNetApplyAdvanced.apply_controlnet( | |
| positive=get_value_at_index(text_encoded, 0), | |
| negative=get_value_at_index(empty_text, 0), | |
| control_net=get_value_at_index(CANNY_XLABS_MODEL, 0), | |
| image=get_value_at_index(canny_processed, 0), | |
| strength=canny_strength, | |
| start_percent=0.0, | |
| end_percent=0.5, | |
| vae=get_value_at_index(VAE_MODEL, 0), | |
| ) | |
| # Process depth | |
| depth_processed = depthanything_v2.process( | |
| da_model=get_value_at_index(DEPTH_MODEL, 0), | |
| images=get_value_at_index(size_info, 0), | |
| ) | |
| # Apply Flux guidance | |
| flux_guided = fluxguidance.append( | |
| guidance=depth_strength, | |
| conditioning=get_value_at_index(canny_conditions, 0), | |
| ) | |
| # Process style image | |
| style_img = loadimage.load_image(image=style_image) | |
| # Encode style with CLIP Vision | |
| style_encoded = clipvisionencode.encode( | |
| crop="center", | |
| clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0), | |
| image=get_value_at_index(style_img, 0), | |
| ) | |
| # Set up conditioning | |
| conditioning = instructpixtopixconditioning.encode( | |
| positive=get_value_at_index(flux_guided, 0), | |
| negative=get_value_at_index(canny_conditions, 1), | |
| vae=get_value_at_index(VAE_MODEL, 0), | |
| pixels=get_value_at_index(depth_processed, 0), | |
| ) | |
| # Apply style | |
| style_applied = stylemodelapplyadvanced.apply_stylemodel( | |
| strength=style_strength, | |
| conditioning=get_value_at_index(conditioning, 0), | |
| style_model=get_value_at_index(STYLE_MODEL, 0), | |
| clip_vision_output=get_value_at_index(style_encoded, 0), | |
| ) | |
| # Set up empty latent | |
| empty_latent = emptylatentimage.generate( | |
| width=get_value_at_index(resized_img, 1), | |
| height=get_value_at_index(resized_img, 2), | |
| batch_size=1, | |
| ) | |
| # Set up guidance | |
| guided = basicguider.get_guider( | |
| model=get_value_at_index(UNET_MODEL, 0), | |
| conditioning=get_value_at_index(style_applied, 0), | |
| ) | |
| # Set up scheduler | |
| schedule = basicscheduler.get_sigmas( | |
| scheduler="simple", | |
| steps=steps, | |
| denoise=1, | |
| model=get_value_at_index(UNET_MODEL, 0), | |
| ) | |
| # Generate random noise | |
| noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64)) | |
| # Sample | |
| sampled = samplercustomadvanced.sample( | |
| noise=get_value_at_index(noise, 0), | |
| guider=get_value_at_index(guided, 0), | |
| sampler=get_value_at_index(SAMPLER, 0), | |
| sigmas=get_value_at_index(schedule, 0), | |
| latent_image=get_value_at_index(empty_latent, 0), | |
| ) | |
| # Decode VAE | |
| decoded = vaedecode.decode( | |
| samples=get_value_at_index(sampled, 0), | |
| vae=get_value_at_index(VAE_MODEL, 0), | |
| ) | |
| # Create text node for prefix | |
| prefix = cr_text.text_multiline(text=f"flux_zen_{timestamp}") | |
| # Use SaveImage node to save the image | |
| saved_data = saveimage.save_images( | |
| filename_prefix=get_value_at_index(prefix, 0), | |
| images=get_value_at_index(decoded, 0), | |
| ) | |
| try: | |
| saved_path = f"output/{saved_data['ui']['images'][0]['filename']}" | |
| return saved_path | |
| except Exception as e: | |
| print(f"Error getting saved image path: {e}") | |
| # Fall back to the expected path | |
| return os.path.join("output", output_filename) | |
| css = """ | |
| footer { | |
| visibility: hidden; | |
| } | |
| .title { | |
| font-size: 2.5em; | |
| background: linear-gradient(109deg, rgba(34,193,195,1) 0%, rgba(67,253,45,1) 100%); | |
| -webkit-background-clip: text; | |
| -webkit-text-fill-color: transparent; | |
| font-weight: bold; | |
| } | |
| """ | |
| with gr.Blocks(css=css) as demo: | |
| gr.HTML( | |
| """ | |
| <h1><center>🎨 FLUX <span class="title">Zen Style</span> Depth+Canny</center></h1> | |
| """ | |
| ) | |
| gr.Markdown( | |
| "Flux[dev] Redux + Flux[dev] Depth and XLabs Canny based on the space FLUX Style Shaping" | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| prompt_input = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here...", | |
| info="Describe the image you want to generate", | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| structure_image = gr.Image( | |
| image_mode="RGB", label="Structure Image", type="filepath" | |
| ) | |
| depth_strength = gr.Slider( | |
| minimum=0, | |
| maximum=50, | |
| value=15, | |
| label="Depth Strength", | |
| info="Controls how much the depth map influences the result", | |
| ) | |
| canny_strength = gr.Slider( | |
| minimum=0, | |
| maximum=1.0, | |
| value=0.30, | |
| label="Canny Strength", | |
| info="Controls how much the edge detection influences the result", | |
| ) | |
| steps = gr.Slider( | |
| minimum=10, | |
| maximum=50, | |
| value=28, | |
| label="Steps", | |
| info="More steps = better quality but slower generation", | |
| ) | |
| with gr.Column(scale=1): | |
| style_image = gr.Image(label="Style Image", type="filepath") | |
| style_strength = gr.Slider( | |
| minimum=0, | |
| maximum=1, | |
| value=0.5, | |
| label="Style Strength", | |
| info="Controls how much the style image influences the result", | |
| ) | |
| with gr.Row(): | |
| generate_btn = gr.Button("Generate", value=True, variant="primary") | |
| with gr.Column(scale=1): | |
| output_image = gr.Image(label="Generated Image") | |
| gr.Examples( | |
| examples=ZEN_EXAMPLES, | |
| inputs=[ | |
| prompt_input, | |
| structure_image, | |
| style_image, | |
| output_image, | |
| depth_strength, | |
| canny_strength, | |
| style_strength, | |
| steps, | |
| ], | |
| fn=generate_image, | |
| label="Presets", | |
| examples_per_page=6, | |
| ) | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[ | |
| prompt_input, | |
| structure_image, | |
| style_image, | |
| depth_strength, | |
| canny_strength, | |
| style_strength, | |
| steps, | |
| ], | |
| outputs=[output_image], | |
| ) | |
| gr.Markdown( | |
| """ | |
| ## How to use | |
| 1. Enter a prompt describing the image you want to generate | |
| 2. Upload a structure image to provide the basic shape/composition | |
| 3. Upload a style image to influence the visual style | |
| 4. Adjust the sliders to control the effect strength | |
| 5. Click "Generate" to create your image | |
| ## About | |
| This demo uses FLUX.1-Redux-dev for style transfer, FLUX.1-Depth-dev for depth-guided generation, | |
| and XLabs Canny for edge detection and structure preservation. | |
| """ | |
| ) | |
| if __name__ == "__main__": | |
| # Create an examples directory if it doesn't exist , for now it is empty | |
| os.makedirs("examples", exist_ok=True) | |
| # Launch the app | |
| demo.launch(share=True) | |