from transformers import AutoTokenizer, AutoModelForCausalLM import torch def frase_a_semilla(frase): semilla = "M" if "Dom(Kin)" in frase: semilla += "KKK" if "Mot(NLS)" in frase: semilla += "RRRR" if "TF(GATA)" in frase: semilla += "TFG" if "*AcK@" in frase: semilla += "AK" return semilla frase = input("🔤 Escribe tu frase GeneForgeLang: ") semilla = frase_a_semilla(frase) print("🧪 Semilla generada:", semilla) tokenizer = AutoTokenizer.from_pretrained("nferruz/ProtGPT2", do_lower_case=False) model = AutoModelForCausalLM.from_pretrained("nferruz/ProtGPT2") inputs = tokenizer(semilla, return_tensors="pt") with torch.no_grad(): salida = model.generate( inputs["input_ids"], max_length=100, do_sample=True, top_k=50, temperature=0.8, num_return_sequences=1 ) print("🧬 Proteína generada:") print(tokenizer.decode(salida[0], skip_special_tokens=True))