Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,56 @@
|
|
1 |
-
|
2 |
-
import gradio as gr
|
3 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
-
import torch
|
5 |
-
|
6 |
-
# Cargar el modelo solo una vez
|
7 |
-
model = AutoModelForCausalLM.from_pretrained("nferruz/ProtGPT2")
|
8 |
-
tokenizer = AutoTokenizer.from_pretrained("nferruz/ProtGPT2")
|
9 |
-
tokenizer.pad_token = tokenizer.eos_token
|
10 |
-
|
11 |
-
# Traducción entre moléculas
|
12 |
-
def transcode_phrase(phrase, src, dst):
|
13 |
-
if src == dst:
|
14 |
-
return "⚠️ Source and target are the same."
|
15 |
-
if src == "DNA" and dst == "RNA":
|
16 |
-
return phrase.replace("~d:", ":r:").replace("Exon", "Ex").replace("Intr", "removed")
|
17 |
-
elif src == "RNA" and dst == "Protein":
|
18 |
-
return phrase.replace(":r:", "^p:").replace("Ex1", "Dom(Kin)").replace("Ex2", "Mot(NLS)")
|
19 |
-
elif src == "Protein" and dst == "DNA":
|
20 |
-
return phrase.replace("^p:", "~d:").replace("Dom(Kin)", "Exon1").replace("Mot(NLS)", "Exon2")
|
21 |
-
else:
|
22 |
-
return "❌ Translation not implemented."
|
23 |
-
|
24 |
-
# Generar proteína a partir de frase
|
25 |
-
semillas = {
|
26 |
-
"^p:Dom(Kin)-Mot(NLS)*AcK@147=Localize(Nucleus)": "MKKK",
|
27 |
-
"^p:Mot(NLS)-Mot(PEST)*P@120": "MKSP",
|
28 |
-
"^p:Dom(ZnF)-Mot(NLS)*UbK@42": "MKHG",
|
29 |
-
}
|
30 |
-
|
31 |
-
def generar_desde_frase(frase):
|
32 |
-
semilla = semillas.get(frase, "MKKK")
|
33 |
-
inputs = tokenizer(semilla, return_tensors="pt", padding=True)
|
34 |
-
outputs = model.generate(**inputs, max_length=200, do_sample=True, top_k=950, temperature=1.5, num_return_sequences=1)
|
35 |
-
secuencia = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
-
return f"🧪 Seed: {semilla}"
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
gr.
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
gr.
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
demo.launch()
|
|
|
1 |
+
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
4 |
+
import torch
|
5 |
+
|
6 |
+
# Cargar el modelo solo una vez
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("nferruz/ProtGPT2")
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("nferruz/ProtGPT2")
|
9 |
+
tokenizer.pad_token = tokenizer.eos_token
|
10 |
+
|
11 |
+
# Traducción entre moléculas
|
12 |
+
def transcode_phrase(phrase, src, dst):
|
13 |
+
if src == dst:
|
14 |
+
return "⚠️ Source and target are the same."
|
15 |
+
if src == "DNA" and dst == "RNA":
|
16 |
+
return phrase.replace("~d:", ":r:").replace("Exon", "Ex").replace("Intr", "removed")
|
17 |
+
elif src == "RNA" and dst == "Protein":
|
18 |
+
return phrase.replace(":r:", "^p:").replace("Ex1", "Dom(Kin)").replace("Ex2", "Mot(NLS)")
|
19 |
+
elif src == "Protein" and dst == "DNA":
|
20 |
+
return phrase.replace("^p:", "~d:").replace("Dom(Kin)", "Exon1").replace("Mot(NLS)", "Exon2")
|
21 |
+
else:
|
22 |
+
return "❌ Translation not implemented."
|
23 |
+
|
24 |
+
# Generar proteína a partir de frase
|
25 |
+
semillas = {
|
26 |
+
"^p:Dom(Kin)-Mot(NLS)*AcK@147=Localize(Nucleus)": "MKKK",
|
27 |
+
"^p:Mot(NLS)-Mot(PEST)*P@120": "MKSP",
|
28 |
+
"^p:Dom(ZnF)-Mot(NLS)*UbK@42": "MKHG",
|
29 |
+
}
|
30 |
+
|
31 |
+
def generar_desde_frase(frase):
|
32 |
+
semilla = semillas.get(frase, "MKKK")
|
33 |
+
inputs = tokenizer(semilla, return_tensors="pt", padding=True)
|
34 |
+
outputs = model.generate(**inputs, max_length=200, do_sample=True, top_k=950, temperature=1.5, num_return_sequences=1)
|
35 |
+
secuencia = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
36 |
+
return f"🧪 Seed: {semilla}\n🧬 Generated Protein:\n{secuencia}"
|
37 |
+
|
38 |
+
# Interfaz Gradio
|
39 |
+
with gr.Blocks() as demo:
|
40 |
+
with gr.Tab("Phrase → Protein"):
|
41 |
+
gr.Markdown("### Generate Protein Sequence from GeneForgeLang Phrase")
|
42 |
+
input_frase = gr.Textbox(label="Input Phrase")
|
43 |
+
output_prot = gr.Textbox(label="Generated Protein")
|
44 |
+
boton_gen = gr.Button("Generate")
|
45 |
+
boton_gen.click(fn=generar_desde_frase, inputs=input_frase, outputs=output_prot)
|
46 |
+
|
47 |
+
with gr.Tab("Transcode Across Molecules"):
|
48 |
+
gr.Markdown("### Convert between DNA, RNA, and Protein symbolic phrases")
|
49 |
+
input_phrase = gr.Textbox(label="Input GeneForgeLang Phrase")
|
50 |
+
src_select = gr.Radio(choices=["DNA", "RNA", "Protein"], label="Translate From", value="DNA")
|
51 |
+
dst_select = gr.Radio(choices=["DNA", "RNA", "Protein"], label="Translate To", value="RNA")
|
52 |
+
output = gr.Textbox(label="Translated Phrase")
|
53 |
+
trans_btn = gr.Button("Translate")
|
54 |
+
trans_btn.click(fn=transcode_phrase, inputs=[input_phrase, src_select, dst_select], outputs=output)
|
55 |
+
|
56 |
+
demo.launch()
|
|
|
|