fmegahed commited on
Commit
d87b449
·
verified ·
1 Parent(s): 14cf326

Add details to readme

Browse files
Files changed (1) hide show
  1. README.md +52 -1
README.md CHANGED
@@ -10,4 +10,55 @@ pinned: false
10
  short_description: A Demo of statforecast methods
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  short_description: A Demo of statforecast methods
11
  ---
12
 
13
+ # StatsForecast Demo App
14
+
15
+ This demo application showcases various time series forecasting models from the [StatsForecast](https://github.com/Nixtla/statsforecast) package.
16
+
17
+ ## Features
18
+
19
+ - Upload your own time series data in CSV format
20
+ - Choose from multiple forecasting models:
21
+ - Historical Average
22
+ - Naive
23
+ - Seasonal Naive
24
+ - Window Average
25
+ - Seasonal Window Average
26
+ - AutoETS
27
+ - AutoARIMA
28
+ - Configure evaluation strategy:
29
+ - Fixed Window
30
+ - Cross Validation
31
+ - View performance metrics (ME, MAE, RMSE, MAPE)
32
+ - Visualize forecasts
33
+
34
+ ## How to Use
35
+
36
+ 1. Upload a CSV file with time series data containing:
37
+ - `unique_id` column: Identifier for each time series
38
+ - `ds` column: Date/timestamp
39
+ - `y` column: Target values
40
+
41
+ 2. Configure:
42
+ - Frequency (D=daily, H=hourly, M=monthly, etc.)
43
+ - Evaluation strategy and parameters
44
+ - Select models and their parameters
45
+
46
+ 3. Click "Run Forecast" to see results
47
+
48
+ ## Sample Data Format
49
+
50
+ Your CSV should look like this:
51
+
52
+ ```
53
+ unique_id,ds,y
54
+ series1,2023-01-01,100
55
+ series1,2023-01-02,105
56
+ series1,2023-01-03,98
57
+ ...
58
+ ```
59
+
60
+ ## About StatsForecast
61
+
62
+ StatsForecast is a Python library that provides statistical forecasting algorithms for time series data. It is fast and scalable and offers many classical forecasting methods.
63
+
64
+ For more information, visit [Nixtla's StatsForecast repository](https://github.com/Nixtla/statsforecast).