Spaces:
Sleeping
Sleeping
File size: 11,676 Bytes
df15565 d637b83 df15565 20f7ede b13bd8f d637b83 df15565 d637b83 df15565 d637b83 df15565 d637b83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 |
from typing import Union
from argparse import ArgumentParser
import faiss
import asyncio
import json
import hashlib
from os import path, getenv
import gradio as gr
import torch
import numpy as np
import librosa
import config # Import the whole config module
import util
from infer_pack.models import (
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono
)
from infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono
)
from vc_infer_pipeline import VC
# Function to check if the script is running on Hugging Face Spaces
def is_huggingface_spaces() -> bool:
return getenv('SYSTEM') == 'spaces'
in_hf_space = getenv('SYSTEM') == 'spaces'
# Argument parsing
arg_parser = ArgumentParser()
arg_parser.add_argument(
'--hubert',
default=getenv('RVC_HUBERT', 'hubert_base.pt'),
help='path to hubert base model (default: hubert_base.pt)'
)
arg_parser.add_argument(
'--config',
default=getenv('RVC_MULTI_CFG', 'multi_config.json'),
help='path to config file (default: multi_config.json)'
)
arg_parser.add_argument(
'--api',
action='store_true',
help='enable api endpoint'
)
arg_parser.add_argument(
'--cache-examples',
action='store_true',
help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified' # noqa
)
args = arg_parser.parse_args()
app_css = '''
#model_info img {
max-width: 100px;
max-height: 100px;
float: right;
}
#model_info p {
margin: unset;
}
'''
app = gr.Blocks(
theme=gr.themes.Monochrome(primary_hue="blue", secondary_hue="slate"),
css=app_css,
analytics_enabled=False
)
# Load hubert model
hubert_model = util.load_hubert_model(config.device, args.hubert)
hubert_model.eval()
# Load models
multi_cfg = json.load(open(args.config, 'r'))
loaded_models = []
for model_name in multi_cfg.get('models'):
print(f'Loading model: {model_name}')
# Load model info
model_info = json.load(
open(path.join('model', model_name, 'config.json'), 'r')
)
# Load RVC checkpoint
cpt = torch.load(
path.join('model', model_name, model_info['model']),
map_location='cpu'
)
print(cpt.keys())
# Adding the loop to iterate over keys and values in the checkpoint
for key, value in cpt.items():
print(f"{key}: {type(value)}") # This will print out the type of each item in the cpt dictionary.
# Check if the 'config' key exists before trying to access it
if 'config' in cpt:
tgt_sr = cpt['config'][-1]
cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0] # n_spk
else:
print(f"Warning: Model {model_name} does not have a 'config' key. Skipping this model.")
pass # Using pass instead of continue
if_f0 = cpt.get('f0', 1)
# Check the dimension of the 'enc_p.emb_phone.weight' tensor
emb_phone_weight_size = cpt['weight']['enc_p.emb_phone.weight'].shape[1]
if emb_phone_weight_size == 768:
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt['config'],
is_half=util.is_half(config.device)
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])
elif emb_phone_weight_size == 256:
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt['config'],
is_half=util.is_half(config.device)
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config'])
else:
raise ValueError(f"Unexpected emb_phone_weight_size: {emb_phone_weight_size}")
del net_g.enc_q
# According to original code, this thing seems necessary.
print(net_g.load_state_dict(cpt['weight'], strict=False))
net_g.eval().to(config.device)
net_g = net_g.half() if util.is_half(config.device) else net_g.float()
vc = VC(tgt_sr, config)
loaded_models.append(dict(
name=model_name,
metadata=model_info,
vc=vc,
net_g=net_g,
if_f0=if_f0,
target_sr=tgt_sr
))
print(f'Models loaded: {len(loaded_models)}')
# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118 # noqa
def vc_func(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
if input_audio is None:
return (None, 'Please provide input audio.')
if model_index is None:
return (None, 'Please select a model.')
model = loaded_models[model_index]
# Reference: so-vits
(audio_samp, audio_npy) = input_audio
# https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
# Can be change well, we will see
if (audio_npy.shape[0] / audio_samp) > 5000 and in_hf_space:
return (None, 'Input audio is longer than 5 mins.')
# Bloody hell: https://stackoverflow.com/questions/26921836/
if audio_npy.dtype != np.float32: # :thonk:
audio_npy = (
audio_npy / np.iinfo(audio_npy.dtype).max
).astype(np.float32)
if len(audio_npy.shape) > 1:
audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))
if audio_samp != 16000:
audio_npy = librosa.resample(
audio_npy,
orig_sr=audio_samp,
target_sr=16000
)
pitch_int = int(pitch_adjust)
resample = (
0 if resample_option == 'Disable resampling'
else int(resample_option)
)
times = [0, 0, 0]
checksum = hashlib.sha512()
checksum.update(audio_npy.tobytes())
output_audio = model['vc'].pipeline(
hubert_model,
model['net_g'],
model['metadata'].get('speaker_id', 0),
audio_npy,
checksum.hexdigest(),
times,
pitch_int,
f0_method,
path.join('model', model['name'], model['metadata']['feat_index']),
feat_ratio,
model['if_f0'],
filter_radius,
model['target_sr'],
resample,
rms_mix_rate,
'v2'
)
out_sr = (
resample if resample >= 16000 and model['target_sr'] != resample
else model['target_sr']
)
print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
return ((out_sr, output_audio), 'Success')
def update_model_info(model_index):
if model_index is None:
return str(
'### Model info\n'
'Please select a model from dropdown above.'
)
model = loaded_models[model_index]
model_icon = model['metadata'].get('icon', '')
return str(
'### Model info\n'
''
'**{name}**\n\n'
'Author: {author}\n\n'
'Source: {source}\n\n'
'{note}'
).format(
name=model['metadata'].get('name'),
author=model['metadata'].get('author', 'Anonymous'),
source=model['metadata'].get('source', 'Unknown'),
note=model['metadata'].get('note', ''),
icon=(
model_icon
if model_icon.startswith(('http://', 'https://'))
else '/file/model/%s/%s' % (model['name'], model_icon)
)
)
def _example_vc(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
):
(audio, message) = vc_func(
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_option
)
return (
audio,
message,
update_model_info(model_index)
)
with app:
gr.HTML('<div style="text-align: center;"><img src="https://rubinaudio.vercel.app/images/Logos/Imagotipo_Black.svg" width="100" style="margin-bottom: 10px; display: block; margin-left: auto; margin-right: auto;"></div>')
gr.HTML('<h1 style="text-align: center;">Rubin.Audio EXPERIMENTAL!!</h1>')
gr.Markdown(
'<div style="text-align: center;">Please visit <a href="http://www.rubin.audio">Rubin.audio</a> for more information<br>'
'Upload clean audio with no effects or layered vocals.</div>'
)
with gr.Accordion('Instructions', open=False):
gr.Markdown(
'- For faster results upload a vocal that is under 1 minute in length.\n'
'- Use dry, effect-free vocals for optimal results.\n'
'- On mobile, utilize your iPhone\'s video feature for quick audio recording and voice trials.\n'
'- For transitioning from male to female voice, adjust +12 semitones. For female to male, adjust -12 semitones.\n'
'- Harvest algo is better sounding, PM is faster\n'
)
with gr.Row():
with gr.Column():
input_audio = gr.Audio(label='Input audio')
output_audio = gr.Audio(label='Output audio')
with gr.Box():
model_info = gr.Markdown(
'### Model info\n'
'Please select a model from dropdown.',
elem_id='model_info'
)
model_index = gr.Dropdown(
[
'%s - %s' % (
m['metadata'].get('source', 'Unknown'),
m['metadata'].get('name')
)
for m in loaded_models
],
label='Model',
type='index'
)
pitch_adjust = gr.Slider(
label='Pitch',
#elem_id="slider1",
minimum=-24,
maximum=24,
step=1,
value=0
)
with gr.Accordion('Advanced options', open=False):
f0_method = gr.Radio(
label='Render Algo',
choices=['harvest', 'crepe', 'pm'],
value='harvest',
interactive=True
)
feat_ratio = gr.Slider(
label='Feature ratio',
minimum=0,
maximum=1,
step=0.1,
value=0.6
)
filter_radius = gr.Slider(
label='Filter radius',
minimum=0,
maximum=7,
step=1,
value=3
)
rms_mix_rate = gr.Slider(
label='Volume envelope mix rate',
minimum=0,
maximum=1,
step=0.1,
value=1
)
resample_rate = gr.Dropdown(
[
'Disable resampling',
'16000',
'22050',
'44100',
'48000'
],
label='Resample rate',
value='Disable resampling'
)
vc_convert_btn = gr.Button('Convert', variant='primary')
output_msg = gr.Textbox(label='Output message')
vc_convert_btn.click(
vc_func,
[
input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
filter_radius, rms_mix_rate, resample_rate
],
[output_audio, output_msg],
api_name='audio_conversion'
)
model_index.change(
update_model_info,
inputs=[model_index],
outputs=[model_info],
show_progress=False,
queue=False
)
if is_huggingface_spaces():
app.launch()
else:
app.queue(
concurrency_count=1,
max_size=20,
api_open=False
).launch(share=True) |