File size: 11,676 Bytes
df15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d637b83
 
 
df15565
20f7ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b13bd8f
d637b83
df15565
d637b83
df15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d637b83
df15565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d637b83
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
from typing import Union

from argparse import ArgumentParser

import faiss
import asyncio
import json
import hashlib
from os import path, getenv

import gradio as gr

import torch

import numpy as np
import librosa

import config  # Import the whole config module
import util
from infer_pack.models import (
    SynthesizerTrnMs768NSFsid,
    SynthesizerTrnMs768NSFsid_nono
)
from infer_pack.models import (
    SynthesizerTrnMs256NSFsid,
    SynthesizerTrnMs256NSFsid_nono
)
from vc_infer_pipeline import VC
    
# Function to check if the script is running on Hugging Face Spaces
def is_huggingface_spaces() -> bool:
    return getenv('SYSTEM') == 'spaces'
in_hf_space = getenv('SYSTEM') == 'spaces'


# Argument parsing
arg_parser = ArgumentParser()
arg_parser.add_argument(
    '--hubert',
    default=getenv('RVC_HUBERT', 'hubert_base.pt'),
    help='path to hubert base model (default: hubert_base.pt)'
)
arg_parser.add_argument(
    '--config',
    default=getenv('RVC_MULTI_CFG', 'multi_config.json'),
    help='path to config file (default: multi_config.json)'
)
arg_parser.add_argument(
    '--api',
    action='store_true',
    help='enable api endpoint'
)
arg_parser.add_argument(
    '--cache-examples',
    action='store_true',
    help='enable example caching, please remember delete gradio_cached_examples folder when example config has been modified'  # noqa
)
args = arg_parser.parse_args()

app_css = '''
#model_info img {
    max-width: 100px;
    max-height: 100px;
    float: right;
}
#model_info p {
    margin: unset;
}
'''

app = gr.Blocks(
    theme=gr.themes.Monochrome(primary_hue="blue", secondary_hue="slate"),
    css=app_css,
    analytics_enabled=False
)

# Load hubert model
hubert_model = util.load_hubert_model(config.device, args.hubert)
hubert_model.eval()

# Load models
multi_cfg = json.load(open(args.config, 'r'))
loaded_models = []

for model_name in multi_cfg.get('models'):
    print(f'Loading model: {model_name}')

    # Load model info
    model_info = json.load(
        open(path.join('model', model_name, 'config.json'), 'r')
    )

# Load RVC checkpoint
cpt = torch.load(
    path.join('model', model_name, model_info['model']),
    map_location='cpu'
)

print(cpt.keys())

# Adding the loop to iterate over keys and values in the checkpoint
for key, value in cpt.items():
    print(f"{key}: {type(value)}")  # This will print out the type of each item in the cpt dictionary.

# Check if the 'config' key exists before trying to access it
if 'config' in cpt:
    tgt_sr = cpt['config'][-1]
    cpt['config'][-3] = cpt['weight']['emb_g.weight'].shape[0]  # n_spk
else:
    print(f"Warning: Model {model_name} does not have a 'config' key. Skipping this model.")
    pass  # Using pass instead of continue

    if_f0 = cpt.get('f0', 1)
    # Check the dimension of the 'enc_p.emb_phone.weight' tensor
    emb_phone_weight_size = cpt['weight']['enc_p.emb_phone.weight'].shape[1]
    if emb_phone_weight_size == 768:
        if if_f0 == 1:
            net_g = SynthesizerTrnMs768NSFsid(
                *cpt['config'],
                is_half=util.is_half(config.device)
            )
        else:
            net_g = SynthesizerTrnMs768NSFsid_nono(*cpt['config'])
    elif emb_phone_weight_size == 256:
        if if_f0 == 1:
            net_g = SynthesizerTrnMs256NSFsid(
                *cpt['config'],
                is_half=util.is_half(config.device)
            )
        else:
            net_g = SynthesizerTrnMs256NSFsid_nono(*cpt['config'])
    else:
        raise ValueError(f"Unexpected emb_phone_weight_size: {emb_phone_weight_size}")

    del net_g.enc_q

    # According to original code, this thing seems necessary.
    print(net_g.load_state_dict(cpt['weight'], strict=False))

    net_g.eval().to(config.device)
    net_g = net_g.half() if util.is_half(config.device) else net_g.float()

    vc = VC(tgt_sr, config)
    
    loaded_models.append(dict(
        name=model_name,
        metadata=model_info,
        vc=vc,
        net_g=net_g,
        if_f0=if_f0,
        target_sr=tgt_sr
    ))
        
print(f'Models loaded: {len(loaded_models)}')

# https://github.com/fumiama/Retrieval-based-Voice-Conversion-WebUI/blob/main/infer-web.py#L118  # noqa
def vc_func(
    input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    if input_audio is None:
        return (None, 'Please provide input audio.')

    if model_index is None:
        return (None, 'Please select a model.')

    model = loaded_models[model_index]

    # Reference: so-vits
    (audio_samp, audio_npy) = input_audio

    # https://huggingface.co/spaces/zomehwh/rvc-models/blob/main/app.py#L49
    # Can be change well, we will see
    if (audio_npy.shape[0] / audio_samp) > 5000 and in_hf_space:
        return (None, 'Input audio is longer than 5 mins.')

    # Bloody hell: https://stackoverflow.com/questions/26921836/
    if audio_npy.dtype != np.float32:  # :thonk:
        audio_npy = (
            audio_npy / np.iinfo(audio_npy.dtype).max
        ).astype(np.float32)

    if len(audio_npy.shape) > 1:
        audio_npy = librosa.to_mono(audio_npy.transpose(1, 0))

    if audio_samp != 16000:
        audio_npy = librosa.resample(
            audio_npy,
            orig_sr=audio_samp,
            target_sr=16000
        )

    pitch_int = int(pitch_adjust)

    resample = (
        0 if resample_option == 'Disable resampling'
        else int(resample_option)
    )

    times = [0, 0, 0]

    checksum = hashlib.sha512()
    checksum.update(audio_npy.tobytes())

    output_audio = model['vc'].pipeline(
        hubert_model,
        model['net_g'],
        model['metadata'].get('speaker_id', 0),
        audio_npy,
        checksum.hexdigest(),
        times,
        pitch_int,
        f0_method,
        path.join('model', model['name'], model['metadata']['feat_index']),
        feat_ratio,
        model['if_f0'],
        filter_radius,
        model['target_sr'],
        resample,
        rms_mix_rate,
        'v2'
    )

    out_sr = (
        resample if resample >= 16000 and model['target_sr'] != resample
        else model['target_sr']
    )

    print(f'npy: {times[0]}s, f0: {times[1]}s, infer: {times[2]}s')
    return ((out_sr, output_audio), 'Success')

def update_model_info(model_index):
    if model_index is None:
        return str(
            '### Model info\n'
            'Please select a model from dropdown above.'
        )

    model = loaded_models[model_index]
    model_icon = model['metadata'].get('icon', '')

    return str(
        '### Model info\n'
        '![model icon]({icon})'
        '**{name}**\n\n'
        'Author: {author}\n\n'
        'Source: {source}\n\n'
        '{note}'
    ).format(
        name=model['metadata'].get('name'),
        author=model['metadata'].get('author', 'Anonymous'),
        source=model['metadata'].get('source', 'Unknown'),
        note=model['metadata'].get('note', ''),
        icon=(
            model_icon
            if model_icon.startswith(('http://', 'https://'))
            else '/file/model/%s/%s' % (model['name'], model_icon)
        )
    )


def _example_vc(
    input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
    filter_radius, rms_mix_rate, resample_option
):
    (audio, message) = vc_func(
        input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
        filter_radius, rms_mix_rate, resample_option
    )
    return (
        audio,
        message,
        update_model_info(model_index)
    )

with app:
    gr.HTML('<div style="text-align: center;"><img src="https://rubinaudio.vercel.app/images/Logos/Imagotipo_Black.svg" width="100" style="margin-bottom: 10px; display: block; margin-left: auto; margin-right: auto;"></div>')
    gr.HTML('<h1 style="text-align: center;">Rubin.Audio EXPERIMENTAL!!</h1>')
    gr.Markdown(
        '<div style="text-align: center;">Please visit <a href="http://www.rubin.audio">Rubin.audio</a> for more information<br>'
        'Upload clean audio with no effects or layered vocals.</div>'
    )
    with gr.Accordion('Instructions', open=False):
        gr.Markdown(
            '- For faster results upload a vocal that is under 1 minute in length.\n'
            '- Use dry, effect-free vocals for optimal results.\n'
            '- On mobile, utilize your iPhone\'s video feature for quick audio recording and voice trials.\n'
            '- For transitioning from male to female voice, adjust +12 semitones. For female to male, adjust -12 semitones.\n'
            '- Harvest algo is better sounding, PM is faster\n'
        )
    with gr.Row():
        with gr.Column():
            input_audio = gr.Audio(label='Input audio')
            output_audio = gr.Audio(label='Output audio')
            with gr.Box():
                model_info = gr.Markdown(
                    '### Model info\n'
                    'Please select a model from dropdown.',
                    elem_id='model_info'
                )
            model_index = gr.Dropdown(
                [
                    '%s - %s' % (
                        m['metadata'].get('source', 'Unknown'),
                        m['metadata'].get('name')
                    )
                    for m in loaded_models
                ],
                label='Model',
                type='index'
            )
            pitch_adjust = gr.Slider(
                label='Pitch',
                #elem_id="slider1",
                minimum=-24,
                maximum=24,
                step=1,
                value=0
            )
            with gr.Accordion('Advanced options', open=False):
                f0_method = gr.Radio(
                    label='Render Algo',
                    choices=['harvest', 'crepe', 'pm'],
                    value='harvest',
                    interactive=True
                )
                feat_ratio = gr.Slider(
                    label='Feature ratio',
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=0.6
                )
                filter_radius = gr.Slider(
                    label='Filter radius',
                    minimum=0,
                    maximum=7,
                    step=1,
                    value=3
                )
                rms_mix_rate = gr.Slider(
                    label='Volume envelope mix rate',
                    minimum=0,
                    maximum=1,
                    step=0.1,
                    value=1
                )
                resample_rate = gr.Dropdown(
                    [
                        'Disable resampling',
                        '16000',
                        '22050',
                        '44100',
                        '48000'
                    ],
                    label='Resample rate',
                    value='Disable resampling'
                )
            vc_convert_btn = gr.Button('Convert', variant='primary')
            output_msg = gr.Textbox(label='Output message')
    
    vc_convert_btn.click(
        vc_func,
        [
            input_audio, model_index, pitch_adjust, f0_method, feat_ratio,
            filter_radius, rms_mix_rate, resample_rate
        ],
        [output_audio, output_msg],
        api_name='audio_conversion'
    )


    model_index.change(
        update_model_info,
        inputs=[model_index],
        outputs=[model_info],
        show_progress=False,
        queue=False
    )

if is_huggingface_spaces():
    app.launch()
else:
    app.queue(
        concurrency_count=1,
        max_size=20,
        api_open=False
    ).launch(share=True)