File size: 17,305 Bytes
afe1a07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import torch
import torch.nn as nn
from audioldm2.latent_diffusion.util import (
    instantiate_from_config,
)

# from latent_diffusion.modules.encoders.modules import CLAPAudioEmbeddingClassifierFreev2
from transformers import GPT2Config, GPT2Model
import torch.optim.lr_scheduler as lr_scheduler

class Sequence2AudioMAE(nn.Module):
    def __init__(

        self,

        base_learning_rate,

        sequence_gen_length,

        sequence_input_key,

        sequence_input_embed_dim,

        cond_stage_config,

        optimizer_type="AdamW",

        use_warmup=True,

        use_ar_gen_loss=False,

        use_audiomae_linear=False,

        target_tokens_mask_ratio=0.0,

        random_mask_ratio=False,

        **kwargs

    ):
        super().__init__()
        assert use_audiomae_linear == False
        self.random_mask_ratio = random_mask_ratio
        self.learning_rate = base_learning_rate
        self.cond_stage_config = cond_stage_config
        self.use_audiomae_linear = use_audiomae_linear
        self.optimizer_type = optimizer_type
        self.use_warmup = use_warmup
        self.use_ar_gen_loss = use_ar_gen_loss
        # Even though the LDM can be conditioned on mutliple pooling rate
        # Our model always predict the higest pooling rate

        # self.time_pool = max(self.cond_stage_config["crossattn_audiomae_pooled"]["params"]["time_pooling_factors"])
        # self.freq_pool = max(self.cond_stage_config["crossattn_audiomae_pooled"]["params"]["freq_pooling_factors"])
        # self.mae_token_num = int(512/(self.time_pool*self.freq_pool))

        self.mae_token_num = sequence_gen_length
        self.sequence_input_key = sequence_input_key
        self.sequence_input_embed_dim = sequence_input_embed_dim
        self.target_tokens_mask_ratio = target_tokens_mask_ratio

        self.start_of_sequence_tokens = nn.Embedding(32, 768)
        self.end_of_sequence_tokens = nn.Embedding(32, 768)

        self.input_sequence_embed_linear = nn.ModuleList([])
        self.initial_learning_rate = None

        for dim in self.sequence_input_embed_dim:
            self.input_sequence_embed_linear.append(nn.Linear(dim, 768))

        self.cond_stage_models = nn.ModuleList([])
        self.instantiate_cond_stage(cond_stage_config)
        self.initialize_param_check_toolkit()

        # configuration = GPT2Config(n_layer=1) # TODO
        # self.model=GPT2Model(configuration)
        ###################
        # self.model=nn.Linear(768,768, bias=False) # TODO change the model
        # with torch.no_grad():
        #     self.model.weight.copy_(torch.eye(768))
        ###################
        self.model = GPT2Model(GPT2Config.from_pretrained("gpt2"))
        ###################
        # self.model = nn.LSTM(input_size=768, hidden_size=768, num_layers=1,bias=False) # TODO

        # self.loss_fn = nn.MSELoss()
        self.loss_fn = nn.L1Loss()

        self.logger_save_dir = None
        self.logger_exp_name = None
        self.logger_exp_group_name = None
        self.logger_version = None

    def set_log_dir(self, save_dir, exp_group_name, exp_name):
        self.logger_save_dir = save_dir
        self.logger_exp_group_name = exp_group_name
        self.logger_exp_name = exp_name

    def cfg_uncond(self, batch_size):
        unconditional_conditioning = {}
        for key in self.cond_stage_model_metadata:
            model_idx = self.cond_stage_model_metadata[key]["model_idx"]
            unconditional_conditioning[key] = self.cond_stage_models[
                model_idx
            ].get_unconditional_condition(batch_size)
        assert (
            "crossattn_audiomae_pooled" in unconditional_conditioning.keys()
        ), "The module is not initialized with AudioMAE"
        unconditional_conditioning[
            "crossattn_clap_to_audiomae_feature"
        ] = unconditional_conditioning["crossattn_audiomae_pooled"]
        return unconditional_conditioning

    def configure_optimizers(self):
        lr = float(self.learning_rate)
        # params = list(self.model.parameters()) + list(self.input_sequence_embed_linear.parameters())
        params = list(self.parameters())

        # opt = torch.optim.Adam(params, lr=lr, betas=(0.9, 0.98), eps=1e-9)
        opt = eval(self.optimizer_type)(params, lr=lr)
        scheduler = lr_scheduler.StepLR(opt, step_size=10, gamma=0.8)
        return [opt], [scheduler]

    def add_sos_eos_tokens(self, _id, sequence, attn_mask):
        batchsize = sequence.size(0)

        new_attn_mask_step = torch.ones((batchsize, 1)).to(sequence.device)
        key_id = torch.tensor([_id]).to(sequence.device)

        # Add two more steps to attn mask
        new_attn_mask = torch.cat(
            [new_attn_mask_step, attn_mask, new_attn_mask_step], dim=1
        )

        # Add two more tokens in the sequence
        sos_token = self.start_of_sequence_tokens(key_id).expand(batchsize, 1, -1)
        eos_token = self.end_of_sequence_tokens(key_id).expand(batchsize, 1, -1)
        new_sequence = torch.cat([sos_token, sequence, eos_token], dim=1)
        return new_sequence, new_attn_mask

    def truncate_sequence_and_mask(self, sequence, mask, max_len=512):
        if sequence.size(1) > max_len:
            print(
                "The input sequence length to GPT-2 model is too long:",
                sequence.size(1),
            )
            return sequence[:, :max_len], mask[:, :max_len]
        else:
            return sequence, mask

    def get_input_sequence_and_mask(self, cond_dict):
        input_embeds = None
        input_embeds_attn_mask = None
        for _id, sequence_key in enumerate(self.sequence_input_key):
            assert sequence_key in cond_dict.keys(), (
                "Invalid sequence key %s" % sequence_key
            )
            cond_embed = cond_dict[sequence_key]
            if isinstance(cond_embed, list):
                assert (
                    len(cond_embed) == 2
                ), "The crossattn returned list should have length 2, including embed and attn_mask"
                item_input_embeds, item_attn_mask = cond_embed

                item_input_embeds = self.input_sequence_embed_linear[_id](
                    item_input_embeds
                )

                item_input_embeds, item_attn_mask = self.add_sos_eos_tokens(
                    _id, item_input_embeds, item_attn_mask
                )

                if input_embeds is None and input_embeds_attn_mask is None:
                    input_embeds, input_embeds_attn_mask = (
                        item_input_embeds,
                        item_attn_mask,
                    )
                else:
                    input_embeds = torch.cat(
                        [input_embeds, item_input_embeds], dim=1
                    )  # The 1-st dimension is time steps
                    input_embeds_attn_mask = torch.cat(
                        [input_embeds_attn_mask, item_attn_mask], dim=1
                    )  # The 1-st dimension is time steps
            else:
                assert isinstance(cond_embed, torch.Tensor)
                cond_embed = self.input_sequence_embed_linear[_id](cond_embed)
                attn_mask = torch.ones((cond_embed.size(0), cond_embed.size(1))).to(
                    cond_embed.device
                )

                item_input_embeds, item_attn_mask = self.add_sos_eos_tokens(
                    _id, cond_embed, attn_mask
                )

                if input_embeds is None and input_embeds_attn_mask is None:
                    input_embeds, input_embeds_attn_mask = (
                        item_input_embeds,
                        item_attn_mask,
                    )
                else:
                    input_embeds, input_embeds_attn_mask = torch.cat(
                        [input_embeds, item_input_embeds], dim=1
                    ), torch.cat([input_embeds_attn_mask, item_attn_mask], dim=1)

        assert input_embeds is not None and input_embeds_attn_mask is not None

        input_embeds, input_embeds_attn_mask = self.truncate_sequence_and_mask(
            input_embeds, input_embeds_attn_mask, int(1024 - self.mae_token_num)
        )
        cond_sequence_end_time_idx = input_embeds.size(
            1
        )  # The index that we start to collect the output embeds

        return input_embeds, input_embeds_attn_mask, cond_sequence_end_time_idx

    def warmup_step(self):
        if self.initial_learning_rate is None:
            self.initial_learning_rate = float(self.learning_rate)

        # Only the first parameter group
        if self.global_step <= 1000:
            if self.global_step == 0:
                print(
                    "Warming up learning rate start with %s"
                    % self.initial_learning_rate
                )
            self.trainer.optimizers[0].param_groups[0]["lr"] = (
                self.global_step / 1000
            ) * self.initial_learning_rate
        else:
            # TODO set learning rate here
            self.trainer.optimizers[0].param_groups[0][
                "lr"
            ] = self.initial_learning_rate

    def mask_target_sequence(self, target_embeds, target_embeds_attn_mask):
        time_seq_mask = None
        if self.target_tokens_mask_ratio > 1e-4:
            batchsize, time_seq_len, embed_dim = target_embeds.size()
            _, time_seq_len = target_embeds_attn_mask.size()
            # Generate random mask
            if self.random_mask_ratio:
                mask_ratio = torch.rand(1).item() * self.target_tokens_mask_ratio
            else:
                mask_ratio = self.target_tokens_mask_ratio

            time_seq_mask = (torch.rand((batchsize, time_seq_len)) > mask_ratio).to(
                target_embeds.device
            )
            # Mask the target embedding
            target_embeds = target_embeds * time_seq_mask.unsqueeze(-1)
            target_embeds_attn_mask = target_embeds_attn_mask * time_seq_mask
        return target_embeds, target_embeds_attn_mask, time_seq_mask

    def generate_partial(self, batch, cond_dict=None, no_grad=False):
        if cond_dict is None:
            cond_dict = self.get_input(batch)

        print("Generate partially prompted audio with in-context learning")
        # self.model.train()
        # assert self.model.training==True

        target_embeds, target_embeds_attn_mask = (
            cond_dict["crossattn_audiomae_pooled"][0],
            cond_dict["crossattn_audiomae_pooled"][1],
        )

        target_time_steps = target_embeds.size(1)

        (
            input_embeds,
            input_embeds_attn_mask,
            cond_sequence_end_time_idx,
        ) = self.get_input_sequence_and_mask(cond_dict)

        model_input = torch.cat(
            [input_embeds, target_embeds[:, : target_time_steps // 4, :]], dim=1
        )
        model_input_mask = torch.cat(
            [
                input_embeds_attn_mask,
                target_embeds_attn_mask[:, : target_time_steps // 4],
            ],
            dim=1,
        )

        steps = self.mae_token_num

        for _ in range(3 * steps // 4):
            output = self.model(
                inputs_embeds=model_input, attention_mask=model_input_mask
            )["last_hidden_state"]
            # Update the model input
            model_input = torch.cat([model_input, output[:, -1:, :]], dim=1)
            # Update the attention mask
            attention_mask_new_step = torch.ones((model_input_mask.size(0), 1)).to(
                model_input.device
            )
            model_input_mask = torch.cat(
                [model_input_mask, attention_mask_new_step], dim=1
            )

        output = model_input[:, cond_sequence_end_time_idx:]

        return output, cond_dict

    def generate(self, batch, cond_dict=None, no_grad=False):
        if cond_dict is None:
            cond_dict = self.get_input(batch)

        # self.model.train()
        # print("!!!!!!!!!!!!!train")

        (
            input_embeds,
            input_embeds_attn_mask,
            cond_sequence_end_time_idx,
        ) = self.get_input_sequence_and_mask(cond_dict)
        model_input = input_embeds
        model_input_mask = input_embeds_attn_mask

        steps = self.mae_token_num

        for _ in range(steps):
            output = self.model(
                inputs_embeds=model_input, attention_mask=model_input_mask
            )["last_hidden_state"]
            # Update the model input
            model_input = torch.cat([model_input, output[:, -1:, :]], dim=1)
            # Update the attention mask
            attention_mask_new_step = torch.ones((model_input_mask.size(0), 1)).to(
                model_input.device
            )
            model_input_mask = torch.cat(
                [model_input_mask, attention_mask_new_step], dim=1
            )

        return model_input[:, cond_sequence_end_time_idx:], cond_dict

    def get_input_item(self, batch, k):
        fname, text, waveform, stft, fbank = (
            batch["fname"],
            batch["text"],
            batch["waveform"],
            batch["stft"],
            batch["log_mel_spec"],
        )
        ret = {}

        ret["fbank"] = (
            fbank.unsqueeze(1).to(memory_format=torch.contiguous_format).float()
        )
        ret["stft"] = stft.to(memory_format=torch.contiguous_format).float()
        # ret["clip_label"] = clip_label.to(memory_format=torch.contiguous_format).float()
        ret["waveform"] = waveform.to(memory_format=torch.contiguous_format).float()
        ret["text"] = list(text)
        ret["fname"] = fname

        for key in batch.keys():
            if key not in ret.keys():
                ret[key] = batch[key]

        return ret[k]

    def get_input(self, batch):
        cond_dict = {}
        if len(self.cond_stage_model_metadata.keys()) > 0:
            unconditional_cfg = False

            for cond_model_key in self.cond_stage_model_metadata.keys():
                cond_stage_key = self.cond_stage_model_metadata[cond_model_key][
                    "cond_stage_key"
                ]

                # if(not self.training):
                #     if(isinstance(self.cond_stage_models[self.cond_stage_model_metadata[cond_model_key]["model_idx"]], CLAPAudioEmbeddingClassifierFreev2)):
                #         assert cond_stage_key == "text" # CLAP model should use text for evaluation

                # The original data for conditioning
                xc = self.get_input_item(batch, cond_stage_key)
                if type(xc) == torch.Tensor:
                    xc = xc.to(self.device)

                c = self.get_learned_conditioning(
                    xc, key=cond_model_key, unconditional_cfg=unconditional_cfg
                )
                cond_dict[cond_model_key] = c

        return cond_dict

    def instantiate_cond_stage(self, config):
        self.cond_stage_model_metadata = {}

        for i, cond_model_key in enumerate(config.keys()):
            model = instantiate_from_config(config[cond_model_key])
            self.cond_stage_models.append(model)
            self.cond_stage_model_metadata[cond_model_key] = {
                "model_idx": i,
                "cond_stage_key": config[cond_model_key]["cond_stage_key"],
                "conditioning_key": config[cond_model_key]["conditioning_key"],
            }

    def get_learned_conditioning(self, c, key, unconditional_cfg):
        assert key in self.cond_stage_model_metadata.keys()

        # Classifier-free guidance
        if not unconditional_cfg:
            c = self.cond_stage_models[
                self.cond_stage_model_metadata[key]["model_idx"]
            ](c)
        else:
            if isinstance(c, torch.Tensor):
                batchsize = c.size(0)
            elif isinstance(c, list):
                batchsize = len(c)
            else:
                raise NotImplementedError()
            c = self.cond_stage_models[
                self.cond_stage_model_metadata[key]["model_idx"]
            ].get_unconditional_condition(batchsize)

        return c

    def initialize_param_check_toolkit(self):
        self.tracked_steps = 0
        self.param_dict = {}

    def statistic_require_grad_tensor_number(self, module, name=None):
        requires_grad_num = 0
        total_num = 0
        require_grad_tensor = None
        for p in module.parameters():
            if p.requires_grad:
                requires_grad_num += 1
                if require_grad_tensor is None:
                    require_grad_tensor = p
            total_num += 1
        print(
            "Module: [%s] have %s trainable parameters out of %s total parameters (%.2f)"
            % (name, requires_grad_num, total_num, requires_grad_num / total_num)
        )
        return require_grad_tensor