import pandas as pd import jax.numpy as jnp from typing import List, Union # Defining cosine similarity using flax. from backend.config import MODELS_ID from backend.utils import load_model def cos_sim(a, b): return jnp.matmul(a, jnp.transpose(b)) / (jnp.linalg.norm(a) * jnp.linalg.norm(b)) # We get similarity between embeddings. def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict: dict): print(model_name) model = load_model(model_name, model_dict) # Creating embeddings if hasattr(model, 'encode'): anchor_emb = model.encode(anchor)[None, :] inputs_emb = model.encode(inputs) else: assert len(model) == 2 anchor_emb = model[0].encode(anchor)[None, :] inputs_emb = model[1].encode(inputs) # Obtaining similarity similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb))) # Returning a Pandas' dataframe d = {'inputs': inputs, 'score': [round(similarity[i], 3) for i in range(len(similarity))]} df = pd.DataFrame(d, columns=['inputs', 'score']) return df