Spaces:
Runtime error
Runtime error
import pandas as pd | |
import jax.numpy as jnp | |
from typing import List, Union | |
# Defining cosine similarity using flax. | |
from backend.config import MODELS_ID | |
from backend.utils import load_model | |
def cos_sim(a, b): | |
return jnp.matmul(a, jnp.transpose(b)) / (jnp.linalg.norm(a) * jnp.linalg.norm(b)) | |
# We get similarity between embeddings. | |
def text_similarity(anchor: str, inputs: List[str], model_name: str, model_dict: dict): | |
print(model_name) | |
model = load_model(model_name, model_dict) | |
# Creating embeddings | |
if hasattr(model, 'encode'): | |
anchor_emb = model.encode(anchor)[None, :] | |
inputs_emb = model.encode(inputs) | |
else: | |
assert len(model) == 2 | |
anchor_emb = model[0].encode(anchor)[None, :] | |
inputs_emb = model[1].encode(inputs) | |
# Obtaining similarity | |
similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb))) | |
# Returning a Pandas' dataframe | |
d = {'inputs': inputs, | |
'score': [round(similarity[i], 3) for i in range(len(similarity))]} | |
df = pd.DataFrame(d, columns=['inputs', 'score']) | |
return df | |