Spaces:
Runtime error
Runtime error
from sentence_transformers import SentenceTransformer | |
import pandas as pd | |
import jax.numpy as jnp | |
from typing import List | |
import config | |
# We download the models we will be using. | |
# If you do not want to use all, you can comment the unused ones. | |
distilroberta_model = SentenceTransformer(config.MODELS_ID['distilroberta']) | |
mpnet_model = SentenceTransformer(config.MODELS_ID['mpnet']) | |
minilm_l6_model = SentenceTransformer(config.MODELS_ID['minilm_l6']) | |
# Defining cosine similarity using flax. | |
def cos_sim(a, b): | |
return jnp.matmul(a, jnp.transpose(b))/(jnp.linalg.norm(a)*jnp.linalg.norm(b)) | |
# We get similarity between embeddings. | |
def text_similarity(anchor: str, inputs: List[str], model: str = 'distilroberta'): | |
# Creating embeddings | |
if model == 'distilroberta': | |
anchor_emb = distilroberta_model.encode(anchor)[None, :] | |
inputs_emb = distilroberta_model.encode([input for input in inputs]) | |
elif model == 'mpnet': | |
anchor_emb = mpnet_model.encode(anchor)[None, :] | |
inputs_emb = mpnet_model.encode([input for input in inputs]) | |
elif model == 'minilm_l6': | |
anchor_emb = minilm_l6_model.encode(anchor)[None, :] | |
inputs_emb = minilm_l6_model.encode([input for input in inputs]) | |
# Obtaining similarity | |
similarity = list(jnp.squeeze(cos_sim(anchor_emb, inputs_emb))) | |
# Returning a Pandas' dataframe | |
d = {'inputs': [input for input in inputs], | |
'score': [round(similarity[i],3) for i in range(len(similarity))]} | |
df = pd.DataFrame(d, columns=['inputs', 'score']) | |
return df.sort_values('score', ascending=False) | |