Spaces:
Build error
Build error
feature: add streamlit backbone
Browse files- .gitignore +135 -0
- app.py +13 -0
- image2text.py +12 -0
- koclip/__init__.py +1 -0
- koclip/config.py +109 -0
- koclip/model.py +471 -0
- text2image.py +14 -0
- utils.py +21 -0
.gitignore
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# macOS
|
| 2 |
+
.DS_Store
|
| 3 |
+
|
| 4 |
+
# Byte-compiled / optimized / DLL files
|
| 5 |
+
__pycache__/
|
| 6 |
+
*.py[cod]
|
| 7 |
+
*.class
|
| 8 |
+
|
| 9 |
+
# C extensions
|
| 10 |
+
*.so
|
| 11 |
+
|
| 12 |
+
# Distribution / packaging
|
| 13 |
+
.Python
|
| 14 |
+
build/
|
| 15 |
+
develop-eggs/
|
| 16 |
+
dist/
|
| 17 |
+
downloads/
|
| 18 |
+
eggs/
|
| 19 |
+
.eggs/
|
| 20 |
+
lib/
|
| 21 |
+
lib64/
|
| 22 |
+
parts/
|
| 23 |
+
sdist/
|
| 24 |
+
var/
|
| 25 |
+
wheels/
|
| 26 |
+
pip-wheel-metadata/
|
| 27 |
+
share/python-wheels/
|
| 28 |
+
*.egg-info/
|
| 29 |
+
.installed.cfg
|
| 30 |
+
*.egg
|
| 31 |
+
MANIFEST
|
| 32 |
+
|
| 33 |
+
# PyInstaller
|
| 34 |
+
# Usually these files are written by a python script from a template
|
| 35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 36 |
+
*.manifest
|
| 37 |
+
*.spec
|
| 38 |
+
|
| 39 |
+
# Installer logs
|
| 40 |
+
pip-log.txt
|
| 41 |
+
pip-delete-this-directory.txt
|
| 42 |
+
|
| 43 |
+
# Unit test / coverage reports
|
| 44 |
+
htmlcov/
|
| 45 |
+
.tox/
|
| 46 |
+
.nox/
|
| 47 |
+
.coverage
|
| 48 |
+
.coverage.*
|
| 49 |
+
.cache
|
| 50 |
+
nosetests.xml
|
| 51 |
+
coverage.xml
|
| 52 |
+
*.cover
|
| 53 |
+
*.py,cover
|
| 54 |
+
.hypothesis/
|
| 55 |
+
.pytest_cache/
|
| 56 |
+
cover/
|
| 57 |
+
|
| 58 |
+
# Translations
|
| 59 |
+
*.mo
|
| 60 |
+
*.pot
|
| 61 |
+
|
| 62 |
+
# Django:
|
| 63 |
+
*.log
|
| 64 |
+
local_settings.py
|
| 65 |
+
db.sqlite3
|
| 66 |
+
db.sqlite3-journal
|
| 67 |
+
|
| 68 |
+
# Flask:
|
| 69 |
+
instance/
|
| 70 |
+
.webassets-cache
|
| 71 |
+
|
| 72 |
+
# Sphinx documentation
|
| 73 |
+
docs/_build/
|
| 74 |
+
|
| 75 |
+
# PyBuilder
|
| 76 |
+
.pybuilder/
|
| 77 |
+
target/
|
| 78 |
+
|
| 79 |
+
# pyenv
|
| 80 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 81 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 82 |
+
# .python-version
|
| 83 |
+
|
| 84 |
+
# pipenv
|
| 85 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 86 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 87 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 88 |
+
# install all needed dependencies.
|
| 89 |
+
Pipfile
|
| 90 |
+
Pipfile.lock
|
| 91 |
+
|
| 92 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
| 93 |
+
__pypackages__/
|
| 94 |
+
|
| 95 |
+
# Environments
|
| 96 |
+
.env
|
| 97 |
+
.venv
|
| 98 |
+
env/
|
| 99 |
+
venv/
|
| 100 |
+
ENV/
|
| 101 |
+
env.bak/
|
| 102 |
+
venv.bak/
|
| 103 |
+
|
| 104 |
+
# Spyder project settings
|
| 105 |
+
.spyderproject
|
| 106 |
+
.spyproject
|
| 107 |
+
|
| 108 |
+
# Intellij project settings
|
| 109 |
+
.idea/
|
| 110 |
+
.iml
|
| 111 |
+
|
| 112 |
+
# Rope project settings
|
| 113 |
+
.ropeproject
|
| 114 |
+
|
| 115 |
+
# mkdocs documentation
|
| 116 |
+
/site
|
| 117 |
+
|
| 118 |
+
# mypy
|
| 119 |
+
.mypy_cache/
|
| 120 |
+
.dmypy.json
|
| 121 |
+
dmypy.json
|
| 122 |
+
|
| 123 |
+
# Pyre type checker
|
| 124 |
+
.pyre/
|
| 125 |
+
|
| 126 |
+
# pytype static type analyzer
|
| 127 |
+
.pytype/
|
| 128 |
+
|
| 129 |
+
# Cython debug symbols
|
| 130 |
+
cython_debug/
|
| 131 |
+
|
| 132 |
+
# static files generated from Django application
|
| 133 |
+
media
|
| 134 |
+
staticfiles
|
| 135 |
+
/tags
|
app.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
import image2text
|
| 4 |
+
import text2image
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
PAGES = {"Text to Image": text2image, "Image to Text": image2text}
|
| 8 |
+
|
| 9 |
+
st.sidebar.title("Navigation")
|
| 10 |
+
model = st.sidebar.radio("Model", ["koclip/koclip", "koclip/koclip-large"])
|
| 11 |
+
page = st.sidebar.radio("Go to", list(PAGES.keys()))
|
| 12 |
+
|
| 13 |
+
PAGES[page].app(model)
|
image2text.py
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
from utils import load_model
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def app(model_name):
|
| 7 |
+
model, processor = load_model(model_name)
|
| 8 |
+
|
| 9 |
+
st.title("Text to Image Retrieval")
|
| 10 |
+
st.markdown("""
|
| 11 |
+
Some text goes in here.
|
| 12 |
+
""")
|
koclip/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .model import FlaxHybridCLIP
|
koclip/config.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
|
| 6 |
+
logger = logging.get_logger(__name__)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class HybridCLIPConfig(PretrainedConfig):
|
| 10 |
+
r"""
|
| 11 |
+
:class:`HybridCLIPConfig` is the configuration class to store the configuration of a
|
| 12 |
+
:class:`~HybridCLIPModel`. It is used to instantiate HybridCLIPModel model according to the specified arguments,
|
| 13 |
+
defining the text model and vision model configs.
|
| 14 |
+
Configuration objects inherit from :class:`~transformers.PretrainedConfig` and can be used to control the model
|
| 15 |
+
outputs. Read the documentation from :class:`~transformers.PretrainedConfig` for more information.
|
| 16 |
+
Args:
|
| 17 |
+
text_config_dict (:obj:`dict`):
|
| 18 |
+
Dictionary of configuration options that defines text model config.
|
| 19 |
+
vision_config_dict (:obj:`dict`):
|
| 20 |
+
Dictionary of configuration options that defines vison model config.
|
| 21 |
+
projection_dim (:obj:`int`, `optional`, defaults to 512):
|
| 22 |
+
Dimentionality of text and vision projection layers.
|
| 23 |
+
kwargs (`optional`):
|
| 24 |
+
Dictionary of keyword arguments.
|
| 25 |
+
Examples::
|
| 26 |
+
>>> from transformers import BertConfig, CLIPConfig, HybridCLIPConfig, FlaxHybridCLIP
|
| 27 |
+
>>> # Initializing a BERT and CLIP configuration
|
| 28 |
+
>>> config_text = BertConfig()
|
| 29 |
+
>>> config_vision = CLIPConfig()
|
| 30 |
+
>>> config = HybridCLIPConfig.from_text_vision_configs(config_text, config_vision, projection_dim=512)
|
| 31 |
+
>>> # Initializing a BERT and CLIPVision model
|
| 32 |
+
>>> model = EncoderDecoderModel(config=config)
|
| 33 |
+
>>> # Accessing the model configuration
|
| 34 |
+
>>> config_text = model.config.text_config
|
| 35 |
+
>>> config_vision = model.config.vision_config
|
| 36 |
+
>>> # Saving the model, including its configuration
|
| 37 |
+
>>> model.save_pretrained('my-model')
|
| 38 |
+
>>> # loading model and config from pretrained folder
|
| 39 |
+
>>> encoder_decoder_config = HybridCLIPConfig.from_pretrained('my-model')
|
| 40 |
+
>>> model = FlaxHybridCLIP.from_pretrained('my-model', config=encoder_decoder_config)
|
| 41 |
+
"""
|
| 42 |
+
|
| 43 |
+
model_type = "hybrid-clip"
|
| 44 |
+
is_composition = True
|
| 45 |
+
|
| 46 |
+
def __init__(self, projection_dim=512, **kwargs):
|
| 47 |
+
super().__init__(**kwargs)
|
| 48 |
+
|
| 49 |
+
if "text_config" not in kwargs:
|
| 50 |
+
raise ValueError("`text_config` can not be `None`.")
|
| 51 |
+
|
| 52 |
+
if "vision_config" not in kwargs:
|
| 53 |
+
raise ValueError("`vision_config` can not be `None`.")
|
| 54 |
+
|
| 55 |
+
text_config = kwargs.pop("text_config")
|
| 56 |
+
vision_config = kwargs.pop("vision_config")
|
| 57 |
+
|
| 58 |
+
text_model_type = text_config.pop("model_type")
|
| 59 |
+
vision_model_type = vision_config.pop("model_type")
|
| 60 |
+
|
| 61 |
+
from transformers import AutoConfig
|
| 62 |
+
|
| 63 |
+
self.text_config = AutoConfig.for_model(text_model_type, **text_config)
|
| 64 |
+
|
| 65 |
+
if vision_model_type == "clip":
|
| 66 |
+
self.vision_config = AutoConfig.for_model(
|
| 67 |
+
vision_model_type, **vision_config
|
| 68 |
+
).vision_config
|
| 69 |
+
elif vision_model_type == "clip_vision_model":
|
| 70 |
+
from transformers import CLIPVisionConfig
|
| 71 |
+
|
| 72 |
+
self.vision_config = CLIPVisionConfig(**vision_config)
|
| 73 |
+
else:
|
| 74 |
+
self.vision_config = AutoConfig.for_model(
|
| 75 |
+
vision_model_type, **vision_config
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
self.projection_dim = projection_dim
|
| 79 |
+
self.initializer_factor = 1.0
|
| 80 |
+
|
| 81 |
+
@classmethod
|
| 82 |
+
def from_text_vision_configs(
|
| 83 |
+
cls, text_config: PretrainedConfig, vision_config: PretrainedConfig, **kwargs
|
| 84 |
+
):
|
| 85 |
+
r"""
|
| 86 |
+
Instantiate a :class:`HybridCLIPConfig` (or a derived class) from text model configuration and
|
| 87 |
+
vision model configuration.
|
| 88 |
+
Returns:
|
| 89 |
+
:class:`HybridCLIPConfig`: An instance of a configuration object
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
return cls(
|
| 93 |
+
text_config=text_config.to_dict(),
|
| 94 |
+
vision_config=vision_config.to_dict(),
|
| 95 |
+
**kwargs
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
def to_dict(self):
|
| 99 |
+
"""
|
| 100 |
+
Serializes this instance to a Python dictionary. Override the default
|
| 101 |
+
:meth:`~transformers.PretrainedConfig.to_dict`.
|
| 102 |
+
Returns:
|
| 103 |
+
:obj:`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
| 104 |
+
"""
|
| 105 |
+
output = copy.deepcopy(self.__dict__)
|
| 106 |
+
output["text_config"] = self.text_config.to_dict()
|
| 107 |
+
output["vision_config"] = self.vision_config.to_dict()
|
| 108 |
+
output["model_type"] = self.__class__.model_type
|
| 109 |
+
return output
|
koclip/model.py
ADDED
|
@@ -0,0 +1,471 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The HuggingFace Team. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
|
| 16 |
+
from typing import Optional, Tuple
|
| 17 |
+
|
| 18 |
+
import flax.linen as nn
|
| 19 |
+
import jax
|
| 20 |
+
import jax.numpy as jnp
|
| 21 |
+
from flax.core.frozen_dict import FrozenDict
|
| 22 |
+
from transformers import FLAX_MODEL_MAPPING, FlaxCLIPVisionModel
|
| 23 |
+
from transformers.modeling_flax_utils import FlaxPreTrainedModel
|
| 24 |
+
from transformers.models.clip.modeling_flax_clip import FlaxCLIPOutput
|
| 25 |
+
from transformers.utils import logging
|
| 26 |
+
|
| 27 |
+
from .config import HybridCLIPConfig
|
| 28 |
+
|
| 29 |
+
logger = logging.get_logger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class FlaxHybridCLIPModule(nn.Module):
|
| 33 |
+
config: HybridCLIPConfig
|
| 34 |
+
dtype: jnp.dtype = jnp.float32
|
| 35 |
+
|
| 36 |
+
def setup(self):
|
| 37 |
+
text_config = self.config.text_config
|
| 38 |
+
vision_config = self.config.vision_config
|
| 39 |
+
|
| 40 |
+
self.projection_dim = self.config.projection_dim
|
| 41 |
+
self.text_embed_dim = text_config.hidden_size
|
| 42 |
+
self.vision_embed_dim = vision_config.hidden_size
|
| 43 |
+
|
| 44 |
+
text_module = FLAX_MODEL_MAPPING[self.config.text_config.__class__].module_class
|
| 45 |
+
vision_module = FLAX_MODEL_MAPPING.get(
|
| 46 |
+
self.config.vision_config.__class__, FlaxCLIPVisionModel
|
| 47 |
+
).module_class
|
| 48 |
+
|
| 49 |
+
self.text_model = text_module(text_config, dtype=self.dtype)
|
| 50 |
+
self.vision_model = vision_module(vision_config, dtype=self.dtype)
|
| 51 |
+
|
| 52 |
+
self.visual_projection = nn.Dense(
|
| 53 |
+
self.projection_dim,
|
| 54 |
+
dtype=self.dtype,
|
| 55 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
| 56 |
+
use_bias=False,
|
| 57 |
+
)
|
| 58 |
+
self.text_projection = nn.Dense(
|
| 59 |
+
self.projection_dim,
|
| 60 |
+
dtype=self.dtype,
|
| 61 |
+
kernel_init=jax.nn.initializers.normal(0.02, dtype=self.dtype),
|
| 62 |
+
use_bias=False,
|
| 63 |
+
)
|
| 64 |
+
self.logit_scale = self.param("logit_scale", jax.nn.initializers.ones, [])
|
| 65 |
+
|
| 66 |
+
def __call__(
|
| 67 |
+
self,
|
| 68 |
+
input_ids=None,
|
| 69 |
+
pixel_values=None,
|
| 70 |
+
attention_mask=None,
|
| 71 |
+
position_ids=None,
|
| 72 |
+
token_type_ids=None,
|
| 73 |
+
deterministic: bool = True,
|
| 74 |
+
output_attentions=None,
|
| 75 |
+
output_hidden_states=None,
|
| 76 |
+
return_dict=None,
|
| 77 |
+
):
|
| 78 |
+
return_dict = (
|
| 79 |
+
return_dict if return_dict is not None else self.config.return_dict
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
vision_outputs = self.vision_model(
|
| 83 |
+
pixel_values=pixel_values,
|
| 84 |
+
deterministic=deterministic,
|
| 85 |
+
output_attentions=output_attentions,
|
| 86 |
+
output_hidden_states=output_hidden_states,
|
| 87 |
+
return_dict=return_dict,
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
text_outputs = self.text_model(
|
| 91 |
+
input_ids=input_ids,
|
| 92 |
+
attention_mask=attention_mask,
|
| 93 |
+
token_type_ids=token_type_ids,
|
| 94 |
+
position_ids=position_ids,
|
| 95 |
+
deterministic=deterministic,
|
| 96 |
+
output_attentions=output_attentions,
|
| 97 |
+
output_hidden_states=output_hidden_states,
|
| 98 |
+
return_dict=return_dict,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
image_embeds = vision_outputs[1]
|
| 102 |
+
image_embeds = self.visual_projection(image_embeds)
|
| 103 |
+
|
| 104 |
+
text_embeds = text_outputs[1]
|
| 105 |
+
text_embeds = self.text_projection(text_embeds)
|
| 106 |
+
|
| 107 |
+
# normalized features
|
| 108 |
+
image_embeds = image_embeds / jnp.linalg.norm(
|
| 109 |
+
image_embeds, axis=-1, keepdims=True
|
| 110 |
+
)
|
| 111 |
+
text_embeds = text_embeds / jnp.linalg.norm(text_embeds, axis=-1, keepdims=True)
|
| 112 |
+
|
| 113 |
+
# cosine similarity as logits
|
| 114 |
+
logit_scale = jnp.exp(self.logit_scale)
|
| 115 |
+
logits_per_text = jnp.matmul(text_embeds, image_embeds.T) * logit_scale
|
| 116 |
+
logits_per_image = logits_per_text.T
|
| 117 |
+
|
| 118 |
+
if not return_dict:
|
| 119 |
+
return (
|
| 120 |
+
logits_per_image,
|
| 121 |
+
logits_per_text,
|
| 122 |
+
text_embeds,
|
| 123 |
+
image_embeds,
|
| 124 |
+
text_outputs,
|
| 125 |
+
vision_outputs,
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
return FlaxCLIPOutput(
|
| 129 |
+
logits_per_image=logits_per_image,
|
| 130 |
+
logits_per_text=logits_per_text,
|
| 131 |
+
text_embeds=text_embeds,
|
| 132 |
+
image_embeds=image_embeds,
|
| 133 |
+
text_model_output=text_outputs,
|
| 134 |
+
vision_model_output=vision_outputs,
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class FlaxHybridCLIP(FlaxPreTrainedModel):
|
| 139 |
+
config_class = HybridCLIPConfig
|
| 140 |
+
module_class = FlaxHybridCLIPModule
|
| 141 |
+
|
| 142 |
+
def __init__(
|
| 143 |
+
self,
|
| 144 |
+
config: HybridCLIPConfig,
|
| 145 |
+
input_shape: Optional[Tuple] = None,
|
| 146 |
+
seed: int = 0,
|
| 147 |
+
dtype: jnp.dtype = jnp.float32,
|
| 148 |
+
**kwargs,
|
| 149 |
+
):
|
| 150 |
+
if input_shape is None:
|
| 151 |
+
input_shape = (
|
| 152 |
+
(1, 1),
|
| 153 |
+
(
|
| 154 |
+
1,
|
| 155 |
+
config.vision_config.image_size,
|
| 156 |
+
config.vision_config.image_size,
|
| 157 |
+
3,
|
| 158 |
+
),
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
| 162 |
+
super().__init__(
|
| 163 |
+
config, module, input_shape=input_shape, seed=seed, dtype=dtype
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple) -> FrozenDict:
|
| 167 |
+
# init input tensor
|
| 168 |
+
input_ids = jnp.zeros(input_shape[0], dtype="i4")
|
| 169 |
+
position_ids = jnp.broadcast_to(
|
| 170 |
+
jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape[0]
|
| 171 |
+
)
|
| 172 |
+
token_type_ids = jnp.ones_like(input_ids)
|
| 173 |
+
attention_mask = jnp.ones_like(input_ids)
|
| 174 |
+
|
| 175 |
+
pixel_values = jax.random.normal(rng, input_shape[1])
|
| 176 |
+
|
| 177 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
| 178 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
| 179 |
+
|
| 180 |
+
return self.module.init(
|
| 181 |
+
rngs, input_ids, pixel_values, attention_mask, position_ids, token_type_ids
|
| 182 |
+
)["params"]
|
| 183 |
+
|
| 184 |
+
def __call__(
|
| 185 |
+
self,
|
| 186 |
+
input_ids,
|
| 187 |
+
pixel_values,
|
| 188 |
+
attention_mask=None,
|
| 189 |
+
position_ids=None,
|
| 190 |
+
token_type_ids=None,
|
| 191 |
+
params: dict = None,
|
| 192 |
+
dropout_rng: jax.random.PRNGKey = None,
|
| 193 |
+
train: bool = False,
|
| 194 |
+
output_attentions: Optional[bool] = None,
|
| 195 |
+
output_hidden_states: Optional[bool] = None,
|
| 196 |
+
return_dict: Optional[bool] = None,
|
| 197 |
+
):
|
| 198 |
+
output_attentions = (
|
| 199 |
+
output_attentions
|
| 200 |
+
if output_attentions is not None
|
| 201 |
+
else self.config.output_attentions
|
| 202 |
+
)
|
| 203 |
+
output_hidden_states = (
|
| 204 |
+
output_hidden_states
|
| 205 |
+
if output_hidden_states is not None
|
| 206 |
+
else self.config.output_hidden_states
|
| 207 |
+
)
|
| 208 |
+
return_dict = (
|
| 209 |
+
return_dict if return_dict is not None else self.config.return_dict
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
if position_ids is None:
|
| 213 |
+
position_ids = jnp.broadcast_to(
|
| 214 |
+
jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
if token_type_ids is None:
|
| 218 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
| 219 |
+
|
| 220 |
+
if attention_mask is None:
|
| 221 |
+
attention_mask = jnp.ones_like(input_ids)
|
| 222 |
+
|
| 223 |
+
# Handle any PRNG if needed
|
| 224 |
+
rngs = {}
|
| 225 |
+
if dropout_rng is not None:
|
| 226 |
+
rngs["dropout"] = dropout_rng
|
| 227 |
+
|
| 228 |
+
return self.module.apply(
|
| 229 |
+
{"params": params or self.params},
|
| 230 |
+
jnp.array(input_ids, dtype="i4"),
|
| 231 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
| 232 |
+
jnp.array(attention_mask, dtype="i4"),
|
| 233 |
+
jnp.array(position_ids, dtype="i4"),
|
| 234 |
+
jnp.array(token_type_ids, dtype="i4"),
|
| 235 |
+
not train,
|
| 236 |
+
output_attentions,
|
| 237 |
+
output_hidden_states,
|
| 238 |
+
return_dict,
|
| 239 |
+
rngs=rngs,
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
def get_text_features(
|
| 243 |
+
self,
|
| 244 |
+
input_ids,
|
| 245 |
+
attention_mask=None,
|
| 246 |
+
position_ids=None,
|
| 247 |
+
token_type_ids=None,
|
| 248 |
+
dropout_rng: jax.random.PRNGKey = None,
|
| 249 |
+
train=False,
|
| 250 |
+
):
|
| 251 |
+
r"""
|
| 252 |
+
Args:
|
| 253 |
+
input_ids (:obj:`numpy.ndarray` of shape :obj:`(batch_size, sequence_length)`):
|
| 254 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
| 255 |
+
provide it.
|
| 256 |
+
Indices can be obtained using :class:`~transformers.PreTrainedTokenizer`. See
|
| 257 |
+
:meth:`transformers.PreTrainedTokenizer.encode` and :meth:`transformers.PreTrainedTokenizer.__call__`
|
| 258 |
+
for details.
|
| 259 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
| 260 |
+
Returns:
|
| 261 |
+
text_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The text embeddings
|
| 262 |
+
obtained by applying the projection layer to the pooled output of text model.
|
| 263 |
+
"""
|
| 264 |
+
if position_ids is None:
|
| 265 |
+
position_ids = jnp.broadcast_to(
|
| 266 |
+
jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
if token_type_ids is None:
|
| 270 |
+
token_type_ids = jnp.zeros_like(input_ids)
|
| 271 |
+
|
| 272 |
+
if attention_mask is None:
|
| 273 |
+
attention_mask = jnp.ones_like(input_ids)
|
| 274 |
+
|
| 275 |
+
# Handle any PRNG if needed
|
| 276 |
+
rngs = {}
|
| 277 |
+
if dropout_rng is not None:
|
| 278 |
+
rngs["dropout"] = dropout_rng
|
| 279 |
+
|
| 280 |
+
def _get_features(
|
| 281 |
+
module,
|
| 282 |
+
input_ids,
|
| 283 |
+
attention_mask,
|
| 284 |
+
position_ids,
|
| 285 |
+
token_type_ids,
|
| 286 |
+
deterministic,
|
| 287 |
+
):
|
| 288 |
+
text_outputs = module.text_model(
|
| 289 |
+
input_ids=input_ids,
|
| 290 |
+
attention_mask=attention_mask,
|
| 291 |
+
position_ids=position_ids,
|
| 292 |
+
token_type_ids=token_type_ids,
|
| 293 |
+
deterministic=deterministic,
|
| 294 |
+
)
|
| 295 |
+
pooled_output = text_outputs[1]
|
| 296 |
+
text_features = module.text_projection(pooled_output)
|
| 297 |
+
return text_features
|
| 298 |
+
|
| 299 |
+
return self.module.apply(
|
| 300 |
+
{"params": self.params},
|
| 301 |
+
jnp.array(input_ids, dtype="i4"),
|
| 302 |
+
jnp.array(attention_mask, dtype="i4"),
|
| 303 |
+
jnp.array(position_ids, dtype="i4"),
|
| 304 |
+
jnp.array(token_type_ids, dtype="i4"),
|
| 305 |
+
not train,
|
| 306 |
+
method=_get_features,
|
| 307 |
+
rngs=rngs,
|
| 308 |
+
)
|
| 309 |
+
|
| 310 |
+
def get_image_features(
|
| 311 |
+
self, pixel_values, dropout_rng: jax.random.PRNGKey = None, train=False
|
| 312 |
+
):
|
| 313 |
+
r"""
|
| 314 |
+
Args:
|
| 315 |
+
pixel_values (:obj:`numpy.ndarray` of shape :obj:`(batch_size, num_channels, height, width)`):
|
| 316 |
+
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained
|
| 317 |
+
using :class:`~transformers.ImageFeatureExtractionMixin`. See
|
| 318 |
+
:meth:`transformers.ImageFeatureExtractionMixin.__call__` for details.
|
| 319 |
+
Returns:
|
| 320 |
+
image_features (:obj:`jax_xla.DeviceArray` of shape :obj:`(batch_size, output_dim`): The image embeddings
|
| 321 |
+
obtained by applying the projection layer to the pooled output of vision model.
|
| 322 |
+
"""
|
| 323 |
+
|
| 324 |
+
# Handle any PRNG if needed
|
| 325 |
+
rngs = {}
|
| 326 |
+
if dropout_rng is not None:
|
| 327 |
+
rngs["dropout"] = dropout_rng
|
| 328 |
+
|
| 329 |
+
def _get_features(module, pixel_values, deterministic):
|
| 330 |
+
vision_outputs = module.vision_model(
|
| 331 |
+
pixel_values=pixel_values, deterministic=deterministic
|
| 332 |
+
)
|
| 333 |
+
pooled_output = vision_outputs[1] # pooled_output
|
| 334 |
+
image_features = module.visual_projection(pooled_output)
|
| 335 |
+
return image_features
|
| 336 |
+
|
| 337 |
+
return self.module.apply(
|
| 338 |
+
{"params": self.params},
|
| 339 |
+
jnp.array(pixel_values, dtype=jnp.float32),
|
| 340 |
+
not train,
|
| 341 |
+
method=_get_features,
|
| 342 |
+
rngs=rngs,
|
| 343 |
+
)
|
| 344 |
+
|
| 345 |
+
@classmethod
|
| 346 |
+
def from_text_vision_pretrained(
|
| 347 |
+
cls,
|
| 348 |
+
text_model_name_or_path: str = None,
|
| 349 |
+
vision_model_name_or_path: str = None,
|
| 350 |
+
*model_args,
|
| 351 |
+
**kwargs,
|
| 352 |
+
) -> FlaxPreTrainedModel:
|
| 353 |
+
"""
|
| 354 |
+
Params:
|
| 355 |
+
text_model_name_or_path (:obj: `str`, `optional`):
|
| 356 |
+
Information necessary to initiate the text model. Can be either:
|
| 357 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
| 358 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
| 359 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
| 360 |
+
- A path to a `directory` containing model weights saved using
|
| 361 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
| 362 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
| 363 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
| 364 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
| 365 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
| 366 |
+
vision_model_name_or_path (:obj: `str`, `optional`, defaults to `None`):
|
| 367 |
+
Information necessary to initiate the vision model. Can be either:
|
| 368 |
+
- A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co.
|
| 369 |
+
Valid model ids can be located at the root-level, like ``bert-base-uncased``, or namespaced under
|
| 370 |
+
a user or organization name, like ``dbmdz/bert-base-german-cased``.
|
| 371 |
+
- A path to a `directory` containing model weights saved using
|
| 372 |
+
:func:`~transformers.FlaxPreTrainedModel.save_pretrained`, e.g., ``./my_model_directory/``.
|
| 373 |
+
- A path or url to a `PyTorch checkpoint folder` (e.g, ``./pt_model``). In
|
| 374 |
+
this case, ``from_pt`` should be set to :obj:`True` and a configuration object should be provided
|
| 375 |
+
as ``config`` argument. This loading path is slower than converting the PyTorch checkpoint in
|
| 376 |
+
a Flax model using the provided conversion scripts and loading the Flax model afterwards.
|
| 377 |
+
model_args (remaining positional arguments, `optional`):
|
| 378 |
+
All remaning positional arguments will be passed to the underlying model's ``__init__`` method.
|
| 379 |
+
kwargs (remaining dictionary of keyword arguments, `optional`):
|
| 380 |
+
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
|
| 381 |
+
:obj:`output_attentions=True`).
|
| 382 |
+
- To update the text configuration, use the prefix `text_` for each configuration parameter.
|
| 383 |
+
- To update the vision configuration, use the prefix `vision_` for each configuration parameter.
|
| 384 |
+
- To update the parent model configuration, do not use a prefix for each configuration parameter.
|
| 385 |
+
Behaves differently depending on whether a :obj:`config` is provided or automatically loaded.
|
| 386 |
+
Example::
|
| 387 |
+
>>> from transformers import FlaxHybridCLIP
|
| 388 |
+
>>> # initialize a model from pretrained BERT and CLIP models. Note that the projection layers will be randomly initialized.
|
| 389 |
+
>>> # If using CLIP's vision model the vision projection layer will be initialized using pre-trained weights
|
| 390 |
+
>>> model = FlaxHybridCLIP.from_text_vision_pretrained('bert-base-uncased', 'openai/clip-vit-base-patch32')
|
| 391 |
+
>>> # saving model after fine-tuning
|
| 392 |
+
>>> model.save_pretrained("./bert-clip")
|
| 393 |
+
>>> # load fine-tuned model
|
| 394 |
+
>>> model = FlaxHybridCLIP.from_pretrained("./bert-clip")
|
| 395 |
+
"""
|
| 396 |
+
|
| 397 |
+
kwargs_text = {
|
| 398 |
+
argument[len("text_") :]: value
|
| 399 |
+
for argument, value in kwargs.items()
|
| 400 |
+
if argument.startswith("text_")
|
| 401 |
+
}
|
| 402 |
+
|
| 403 |
+
kwargs_vision = {
|
| 404 |
+
argument[len("vision_") :]: value
|
| 405 |
+
for argument, value in kwargs.items()
|
| 406 |
+
if argument.startswith("vision_")
|
| 407 |
+
}
|
| 408 |
+
|
| 409 |
+
# remove text, vision kwargs from kwargs
|
| 410 |
+
for key in kwargs_text.keys():
|
| 411 |
+
del kwargs["text_" + key]
|
| 412 |
+
for key in kwargs_vision.keys():
|
| 413 |
+
del kwargs["vision_" + key]
|
| 414 |
+
|
| 415 |
+
# Load and initialize the text and vision model
|
| 416 |
+
text_model = kwargs_text.pop("model", None)
|
| 417 |
+
if text_model is None:
|
| 418 |
+
assert (
|
| 419 |
+
text_model_name_or_path is not None
|
| 420 |
+
), "If `model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
|
| 421 |
+
from transformers import FlaxAutoModel
|
| 422 |
+
|
| 423 |
+
if "config" not in kwargs_text:
|
| 424 |
+
from transformers import AutoConfig
|
| 425 |
+
|
| 426 |
+
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
|
| 427 |
+
kwargs_text["config"] = text_config
|
| 428 |
+
|
| 429 |
+
text_model = FlaxAutoModel.from_pretrained(
|
| 430 |
+
text_model_name_or_path, *model_args, **kwargs_text
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
vision_model = kwargs_vision.pop("model", None)
|
| 434 |
+
if vision_model is None:
|
| 435 |
+
assert (
|
| 436 |
+
vision_model_name_or_path is not None
|
| 437 |
+
), "If `model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
|
| 438 |
+
from transformers import FlaxAutoModel
|
| 439 |
+
|
| 440 |
+
if "config" not in kwargs_vision:
|
| 441 |
+
from transformers import AutoConfig
|
| 442 |
+
|
| 443 |
+
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
|
| 444 |
+
kwargs_vision["config"] = vision_config
|
| 445 |
+
|
| 446 |
+
vision_model = FlaxAutoModel.from_pretrained(
|
| 447 |
+
vision_model_name_or_path, *model_args, **kwargs_vision
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
# instantiate config with corresponding kwargs
|
| 451 |
+
dtype = kwargs.pop("dtype", jnp.float32)
|
| 452 |
+
config = HybridCLIPConfig.from_text_vision_configs(
|
| 453 |
+
text_model.config, vision_model.config, **kwargs
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
# init model
|
| 457 |
+
model = cls(config, *model_args, dtype=dtype, **kwargs)
|
| 458 |
+
|
| 459 |
+
if vision_config.model_type == "clip":
|
| 460 |
+
model.params["vision_model"]["vision_model"] = vision_model.params[
|
| 461 |
+
"vision_model"
|
| 462 |
+
]
|
| 463 |
+
model.params["visual_projection"]["kernel"] = vision_model.params[
|
| 464 |
+
"visual_projection"
|
| 465 |
+
]["kernel"]
|
| 466 |
+
else:
|
| 467 |
+
model.params["vision_model"] = vision_model.params
|
| 468 |
+
|
| 469 |
+
model.params["text_model"] = text_model.params
|
| 470 |
+
|
| 471 |
+
return model
|
text2image.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
from utils import load_model
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def app(model_name):
|
| 7 |
+
model, processor = load_model(model_name)
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
st.title("Text to Image Retrieval")
|
| 11 |
+
st.markdown("""
|
| 12 |
+
Some text goes in here.
|
| 13 |
+
""")
|
| 14 |
+
|
utils.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import CLIPProcessor, AutoTokenizer, ViTFeatureExtractor
|
| 3 |
+
|
| 4 |
+
from koclip import FlaxHybridCLIP
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
@st.cache(allow_output_mutation=True)
|
| 8 |
+
def load_model(model_name="koclip/koclip"):
|
| 9 |
+
assert model_name in {"koclip/koclip", "koclip/koclip-large"}
|
| 10 |
+
model = FlaxHybridCLIP.from_pretrained(model_name)
|
| 11 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 12 |
+
processor.tokenizer = AutoTokenizer.from_pretrained("klue/roberta-large")
|
| 13 |
+
if model_name == "koclip/koclip-large":
|
| 14 |
+
processor.feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-large-patch16-224")
|
| 15 |
+
return model, processor
|
| 16 |
+
|
| 17 |
+
@st.cache(allow_output_mutation=True)
|
| 18 |
+
def load_model_v2(model_name="koclip/koclip"):
|
| 19 |
+
model = FlaxHybridCLIP.from_pretrained(model_name)
|
| 20 |
+
processor = CLIPProcessor.from_pretrained(model_name)
|
| 21 |
+
return model, processor
|