Spaces:
Running
Running
Pedro Cuenca
commited on
Commit
·
ffed138
1
Parent(s):
f62b045
Simple skeleton for a streamlit app
Browse filesIn order to use it, you need to create a file `.streamlit/secrets.toml`
to define the URL of the BACKEND_SERVER:
```
BACKEND_SERVER="<server url>"
```
Former-commit-id: 4d81cb1c805c903c74b82a5706b3a54ce8a2348b
- app/app.py +22 -180
app/app.py
CHANGED
|
@@ -1,196 +1,38 @@
|
|
| 1 |
#!/usr/bin/env python
|
| 2 |
# coding: utf-8
|
| 3 |
|
| 4 |
-
# Uncomment to run on cpu
|
| 5 |
-
#import os
|
| 6 |
-
#os.environ["JAX_PLATFORM_NAME"] = "cpu"
|
| 7 |
-
|
| 8 |
import random
|
| 9 |
-
|
| 10 |
-
import
|
| 11 |
-
import flax.linen as nn
|
| 12 |
-
from flax.training.common_utils import shard
|
| 13 |
-
from flax.jax_utils import replicate, unreplicate
|
| 14 |
-
|
| 15 |
-
from transformers.models.bart.modeling_flax_bart import *
|
| 16 |
-
from transformers import BartTokenizer, FlaxBartForConditionalGeneration
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
import requests
|
| 20 |
-
from PIL import Image
|
| 21 |
-
import numpy as np
|
| 22 |
-
import matplotlib.pyplot as plt
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
from dalle_mini.vqgan_jax.modeling_flax_vqgan import VQModel
|
| 26 |
|
| 27 |
import streamlit as st
|
| 28 |
|
| 29 |
-
st.write("Loading model...")
|
| 30 |
-
|
| 31 |
-
# TODO: set those args in a config file
|
| 32 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
| 33 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
| 34 |
-
BOS_TOKEN_ID = 16384
|
| 35 |
-
BASE_MODEL = 'flax-community/dalle-mini'
|
| 36 |
-
|
| 37 |
-
class CustomFlaxBartModule(FlaxBartModule):
|
| 38 |
-
def setup(self):
|
| 39 |
-
# we keep shared to easily load pre-trained weights
|
| 40 |
-
self.shared = nn.Embed(
|
| 41 |
-
self.config.vocab_size,
|
| 42 |
-
self.config.d_model,
|
| 43 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 44 |
-
dtype=self.dtype,
|
| 45 |
-
)
|
| 46 |
-
# a separate embedding is used for the decoder
|
| 47 |
-
self.decoder_embed = nn.Embed(
|
| 48 |
-
OUTPUT_VOCAB_SIZE,
|
| 49 |
-
self.config.d_model,
|
| 50 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 51 |
-
dtype=self.dtype,
|
| 52 |
-
)
|
| 53 |
-
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
| 54 |
-
|
| 55 |
-
# the decoder has a different config
|
| 56 |
-
decoder_config = BartConfig(self.config.to_dict())
|
| 57 |
-
decoder_config.max_position_embeddings = OUTPUT_LENGTH
|
| 58 |
-
decoder_config.vocab_size = OUTPUT_VOCAB_SIZE
|
| 59 |
-
self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)
|
| 60 |
-
|
| 61 |
-
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
| 62 |
-
def setup(self):
|
| 63 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
| 64 |
-
self.lm_head = nn.Dense(
|
| 65 |
-
OUTPUT_VOCAB_SIZE,
|
| 66 |
-
use_bias=False,
|
| 67 |
-
dtype=self.dtype,
|
| 68 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 69 |
-
)
|
| 70 |
-
self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, OUTPUT_VOCAB_SIZE))
|
| 71 |
-
|
| 72 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
| 73 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
| 74 |
-
|
| 75 |
-
# create our model
|
| 76 |
-
# FIXME: Save tokenizer to hub so we can load from there
|
| 77 |
-
tokenizer = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
| 78 |
-
model = CustomFlaxBartForConditionalGeneration.from_pretrained(BASE_MODEL)
|
| 79 |
-
model.config.force_bos_token_to_be_generated = False
|
| 80 |
-
model.config.forced_bos_token_id = None
|
| 81 |
-
model.config.forced_eos_token_id = None
|
| 82 |
-
|
| 83 |
-
vqgan = VQModel.from_pretrained("flax-community/vqgan_f16_16384")
|
| 84 |
-
|
| 85 |
-
def custom_to_pil(x):
|
| 86 |
-
x = np.clip(x, 0., 1.)
|
| 87 |
-
x = (255*x).astype(np.uint8)
|
| 88 |
-
x = Image.fromarray(x)
|
| 89 |
-
if not x.mode == "RGB":
|
| 90 |
-
x = x.convert("RGB")
|
| 91 |
-
return x
|
| 92 |
-
|
| 93 |
-
def generate(input, rng, params):
|
| 94 |
-
return model.generate(
|
| 95 |
-
**input,
|
| 96 |
-
max_length=257,
|
| 97 |
-
num_beams=1,
|
| 98 |
-
do_sample=True,
|
| 99 |
-
prng_key=rng,
|
| 100 |
-
eos_token_id=50000,
|
| 101 |
-
pad_token_id=50000,
|
| 102 |
-
params=params,
|
| 103 |
-
)
|
| 104 |
-
|
| 105 |
-
def get_images(indices, params):
|
| 106 |
-
return vqgan.decode_code(indices, params=params)
|
| 107 |
-
|
| 108 |
-
def plot_images(images):
|
| 109 |
-
fig = plt.figure(figsize=(40, 20))
|
| 110 |
-
columns = 4
|
| 111 |
-
rows = 2
|
| 112 |
-
plt.subplots_adjust(hspace=0, wspace=0)
|
| 113 |
-
|
| 114 |
-
for i in range(1, columns*rows +1):
|
| 115 |
-
fig.add_subplot(rows, columns, i)
|
| 116 |
-
plt.imshow(images[i-1])
|
| 117 |
-
plt.gca().axes.get_yaxis().set_visible(False)
|
| 118 |
-
plt.show()
|
| 119 |
-
|
| 120 |
-
def stack_reconstructions(images):
|
| 121 |
-
w, h = images[0].size[0], images[0].size[1]
|
| 122 |
-
img = Image.new("RGB", (len(images)*w, h))
|
| 123 |
-
for i, img_ in enumerate(images):
|
| 124 |
-
img.paste(img_, (i*w,0))
|
| 125 |
-
return img
|
| 126 |
-
|
| 127 |
-
p_generate = jax.pmap(generate, "batch")
|
| 128 |
-
p_get_images = jax.pmap(get_images, "batch")
|
| 129 |
-
|
| 130 |
-
bart_params = replicate(model.params)
|
| 131 |
-
vqgan_params = replicate(vqgan.params)
|
| 132 |
-
|
| 133 |
-
# ## CLIP Scoring
|
| 134 |
-
from transformers import CLIPProcessor, FlaxCLIPModel
|
| 135 |
-
|
| 136 |
-
clip = FlaxCLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
| 137 |
-
# st.write("FlaxCLIPModel")
|
| 138 |
-
# print("Initialize FlaxCLIPModel")
|
| 139 |
-
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
| 140 |
-
# st.write("CLIPProcessor")
|
| 141 |
-
# print("Initialize CLIPProcessor")
|
| 142 |
-
|
| 143 |
-
def hallucinate(prompt, num_images=64):
|
| 144 |
-
prompt = [prompt] * jax.device_count()
|
| 145 |
-
inputs = tokenizer(prompt, return_tensors='jax', padding="max_length", truncation=True, max_length=128).data
|
| 146 |
-
inputs = shard(inputs)
|
| 147 |
-
|
| 148 |
-
all_images = []
|
| 149 |
-
for i in range(num_images // jax.device_count()):
|
| 150 |
-
key = random.randint(0, 1e7)
|
| 151 |
-
rng = jax.random.PRNGKey(key)
|
| 152 |
-
rngs = jax.random.split(rng, jax.local_device_count())
|
| 153 |
-
indices = p_generate(inputs, rngs, bart_params).sequences
|
| 154 |
-
indices = indices[:, :, 1:]
|
| 155 |
-
|
| 156 |
-
images = p_get_images(indices, vqgan_params)
|
| 157 |
-
images = np.squeeze(np.asarray(images), 1)
|
| 158 |
-
for image in images:
|
| 159 |
-
all_images.append(custom_to_pil(image))
|
| 160 |
-
return all_images
|
| 161 |
-
|
| 162 |
-
def clip_top_k(prompt, images, k=8):
|
| 163 |
-
inputs = processor(text=prompt, images=images, return_tensors="np", padding=True)
|
| 164 |
-
outputs = clip(**inputs)
|
| 165 |
-
logits = outputs.logits_per_text
|
| 166 |
-
scores = np.array(logits[0]).argsort()[-k:][::-1]
|
| 167 |
-
return [images[score] for score in scores]
|
| 168 |
-
|
| 169 |
-
def captioned_strip(images, caption):
|
| 170 |
-
increased_h = 0 if caption is None else 48
|
| 171 |
-
w, h = images[0].size[0], images[0].size[1]
|
| 172 |
-
img = Image.new("RGB", (len(images)*w, h + increased_h))
|
| 173 |
-
for i, img_ in enumerate(images):
|
| 174 |
-
img.paste(img_, (i*w, increased_h))
|
| 175 |
-
|
| 176 |
-
if caption is not None:
|
| 177 |
-
draw = ImageDraw.Draw(img)
|
| 178 |
-
font = ImageFont.truetype("/usr/share/fonts/truetype/liberation2/LiberationMono-Bold.ttf", 40)
|
| 179 |
-
draw.text((20, 3), caption, (255,255,255), font=font)
|
| 180 |
-
return img
|
| 181 |
-
|
| 182 |
# Controls
|
| 183 |
|
| 184 |
-
num_images = st.sidebar.slider("Candidates to generate", 1, 64, 8, 1)
|
| 185 |
-
num_preds = st.sidebar.slider("Best predictions to show", 1, 8, 1, 1)
|
| 186 |
|
|
|
|
| 187 |
|
| 188 |
prompt = st.text_input("What do you want to see?")
|
| 189 |
|
| 190 |
if prompt != "":
|
| 191 |
st.write(f"Generating candidates for: {prompt}")
|
| 192 |
-
images = hallucinate(prompt, num_images=num_images)
|
| 193 |
-
images = clip_top_k(prompt, images, k=num_preds)
|
| 194 |
-
predictions_strip = captioned_strip(images, None)
|
| 195 |
|
| 196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#!/usr/bin/env python
|
| 2 |
# coding: utf-8
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import random
|
| 5 |
+
from dalle_mini.backend import ServiceError, get_images_from_backend
|
| 6 |
+
from dalle_mini.helpers import captioned_strip
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
import streamlit as st
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Controls
|
| 11 |
|
| 12 |
+
# num_images = st.sidebar.slider("Candidates to generate", 1, 64, 8, 1)
|
| 13 |
+
# num_preds = st.sidebar.slider("Best predictions to show", 1, 8, 1, 1)
|
| 14 |
|
| 15 |
+
st.sidebar.markdown('Visit [our report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA)')
|
| 16 |
|
| 17 |
prompt = st.text_input("What do you want to see?")
|
| 18 |
|
| 19 |
if prompt != "":
|
| 20 |
st.write(f"Generating candidates for: {prompt}")
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
try:
|
| 23 |
+
backend_url = st.secrets["BACKEND_SERVER"]
|
| 24 |
+
print(f"Getting selections: {prompt}")
|
| 25 |
+
selected = get_images_from_backend(prompt, backend_url)
|
| 26 |
+
preds = captioned_strip(selected, prompt)
|
| 27 |
+
st.image(preds)
|
| 28 |
+
except ServiceError as error:
|
| 29 |
+
st.write(f"Service unavailable, status: {error.status_code}")
|
| 30 |
+
except KeyError:
|
| 31 |
+
st.write("""
|
| 32 |
+
**Error: BACKEND_SERVER unset**
|
| 33 |
+
|
| 34 |
+
Please, create a file called `.streamlit/secrets.toml` inside the app's folder and include a line to configure the server URL:
|
| 35 |
+
```
|
| 36 |
+
BACKEND_SERVER="<server url>"
|
| 37 |
+
```
|
| 38 |
+
""")
|