Spaces:
Running
Running
feat(demo): update reference
Browse files- tools/inference/inference_pipeline.ipynb +512 -514
tools/inference/inference_pipeline.ipynb
CHANGED
|
@@ -1,515 +1,513 @@
|
|
| 1 |
{
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
| 440 |
-
|
| 441 |
-
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
|
| 455 |
-
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
"
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
-
|
| 499 |
-
|
| 500 |
-
"
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
"nbformat_minor": 0
|
| 515 |
-
}
|
|
|
|
| 1 |
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {
|
| 6 |
+
"colab_type": "text",
|
| 7 |
+
"id": "view-in-github"
|
| 8 |
+
},
|
| 9 |
+
"source": [
|
| 10 |
+
"<a href=\"https://colab.research.google.com/github/borisdayma/dalle-mini/blob/main/tools/inference/inference_pipeline.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "markdown",
|
| 15 |
+
"metadata": {
|
| 16 |
+
"id": "118UKH5bWCGa"
|
| 17 |
+
},
|
| 18 |
+
"source": [
|
| 19 |
+
"# DALL·E mini - Inference pipeline\n",
|
| 20 |
+
"\n",
|
| 21 |
+
"*Generate images from a text prompt*\n",
|
| 22 |
+
"\n",
|
| 23 |
+
"<img src=\"https://github.com/borisdayma/dalle-mini/blob/main/img/logo.png?raw=true\" width=\"200\">\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"This notebook illustrates [DALL·E mini](https://github.com/borisdayma/dalle-mini) inference pipeline.\n",
|
| 26 |
+
"\n",
|
| 27 |
+
"Just want to play? Use [the demo](https://huggingface.co/spaces/flax-community/dalle-mini).\n",
|
| 28 |
+
"\n",
|
| 29 |
+
"For more understanding of the model, refer to [the report](https://wandb.ai/dalle-mini/dalle-mini/reports/DALL-E-mini--Vmlldzo4NjIxODA)."
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"cell_type": "markdown",
|
| 34 |
+
"metadata": {
|
| 35 |
+
"id": "dS8LbaonYm3a"
|
| 36 |
+
},
|
| 37 |
+
"source": [
|
| 38 |
+
"## 🛠️ Installation and set-up"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": null,
|
| 44 |
+
"metadata": {
|
| 45 |
+
"id": "uzjAM2GBYpZX"
|
| 46 |
+
},
|
| 47 |
+
"outputs": [],
|
| 48 |
+
"source": [
|
| 49 |
+
"# Install required libraries\n",
|
| 50 |
+
"!pip install -q transformers\n",
|
| 51 |
+
"!pip install -q git+https://github.com/patil-suraj/vqgan-jax.git\n",
|
| 52 |
+
"!pip install -q git+https://github.com/borisdayma/dalle-mini.git"
|
| 53 |
+
]
|
| 54 |
+
},
|
| 55 |
+
{
|
| 56 |
+
"cell_type": "markdown",
|
| 57 |
+
"metadata": {
|
| 58 |
+
"id": "ozHzTkyv8cqU"
|
| 59 |
+
},
|
| 60 |
+
"source": [
|
| 61 |
+
"We load required models:\n",
|
| 62 |
+
"* dalle·mini for text to encoded images\n",
|
| 63 |
+
"* VQGAN for decoding images\n",
|
| 64 |
+
"* CLIP for scoring predictions"
|
| 65 |
+
]
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"cell_type": "code",
|
| 69 |
+
"execution_count": null,
|
| 70 |
+
"metadata": {
|
| 71 |
+
"id": "K6CxW2o42f-w"
|
| 72 |
+
},
|
| 73 |
+
"outputs": [],
|
| 74 |
+
"source": [
|
| 75 |
+
"# Model references\n",
|
| 76 |
+
"\n",
|
| 77 |
+
"# dalle-mini\n",
|
| 78 |
+
"DALLE_MODEL = \"dalle-mini/dalle-mini/model-1reghx5l:latest\" # can be wandb artifact or 🤗 Hub or local folder\n",
|
| 79 |
+
"DALLE_COMMIT_ID = None\n",
|
| 80 |
+
"\n",
|
| 81 |
+
"# VQGAN model\n",
|
| 82 |
+
"VQGAN_REPO = \"dalle-mini/vqgan_imagenet_f16_16384\"\n",
|
| 83 |
+
"VQGAN_COMMIT_ID = \"e93a26e7707683d349bf5d5c41c5b0ef69b677a9\"\n",
|
| 84 |
+
"\n",
|
| 85 |
+
"# CLIP model\n",
|
| 86 |
+
"CLIP_REPO = \"openai/clip-vit-base-patch16\"\n",
|
| 87 |
+
"CLIP_COMMIT_ID = None"
|
| 88 |
+
]
|
| 89 |
+
},
|
| 90 |
+
{
|
| 91 |
+
"cell_type": "code",
|
| 92 |
+
"execution_count": null,
|
| 93 |
+
"metadata": {
|
| 94 |
+
"id": "Yv-aR3t4Oe5v"
|
| 95 |
+
},
|
| 96 |
+
"outputs": [],
|
| 97 |
+
"source": [
|
| 98 |
+
"import jax\n",
|
| 99 |
+
"import jax.numpy as jnp\n",
|
| 100 |
+
"\n",
|
| 101 |
+
"# check how many devices are available\n",
|
| 102 |
+
"jax.local_device_count()"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": null,
|
| 108 |
+
"metadata": {
|
| 109 |
+
"id": "HWnQrQuXOe5w"
|
| 110 |
+
},
|
| 111 |
+
"outputs": [],
|
| 112 |
+
"source": [
|
| 113 |
+
"# type used for computation - use bfloat16 on TPU's\n",
|
| 114 |
+
"dtype = jnp.bfloat16 if jax.local_device_count() == 8 else jnp.float32\n",
|
| 115 |
+
"\n",
|
| 116 |
+
"# TODO: fix issue with bfloat16\n",
|
| 117 |
+
"dtype = jnp.float32"
|
| 118 |
+
]
|
| 119 |
+
},
|
| 120 |
+
{
|
| 121 |
+
"cell_type": "code",
|
| 122 |
+
"execution_count": null,
|
| 123 |
+
"metadata": {
|
| 124 |
+
"id": "92zYmvsQ38vL"
|
| 125 |
+
},
|
| 126 |
+
"outputs": [],
|
| 127 |
+
"source": [
|
| 128 |
+
"# Load models & tokenizer\n",
|
| 129 |
+
"from dalle_mini.model import DalleBart, DalleBartTokenizer\n",
|
| 130 |
+
"from vqgan_jax.modeling_flax_vqgan import VQModel\n",
|
| 131 |
+
"from transformers import CLIPProcessor, FlaxCLIPModel\n",
|
| 132 |
+
"import wandb\n",
|
| 133 |
+
"\n",
|
| 134 |
+
"# Load dalle-mini\n",
|
| 135 |
+
"model = DalleBart.from_pretrained(\n",
|
| 136 |
+
" DALLE_MODEL, revision=DALLE_COMMIT_ID, dtype=dtype, abstract_init=True\n",
|
| 137 |
+
")\n",
|
| 138 |
+
"tokenizer = DalleBartTokenizer.from_pretrained(DALLE_MODEL, revision=DALLE_COMMIT_ID)\n",
|
| 139 |
+
"\n",
|
| 140 |
+
"# Load VQGAN\n",
|
| 141 |
+
"vqgan = VQModel.from_pretrained(VQGAN_REPO, revision=VQGAN_COMMIT_ID)\n",
|
| 142 |
+
"\n",
|
| 143 |
+
"# Load CLIP\n",
|
| 144 |
+
"clip = FlaxCLIPModel.from_pretrained(CLIP_REPO, revision=CLIP_COMMIT_ID)\n",
|
| 145 |
+
"processor = CLIPProcessor.from_pretrained(CLIP_REPO, revision=CLIP_COMMIT_ID)"
|
| 146 |
+
]
|
| 147 |
+
},
|
| 148 |
+
{
|
| 149 |
+
"cell_type": "markdown",
|
| 150 |
+
"metadata": {
|
| 151 |
+
"id": "o_vH2X1tDtzA"
|
| 152 |
+
},
|
| 153 |
+
"source": [
|
| 154 |
+
"Model parameters are replicated on each device for faster inference."
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"cell_type": "code",
|
| 159 |
+
"execution_count": null,
|
| 160 |
+
"metadata": {
|
| 161 |
+
"id": "wtvLoM48EeVw"
|
| 162 |
+
},
|
| 163 |
+
"outputs": [],
|
| 164 |
+
"source": [
|
| 165 |
+
"from flax.jax_utils import replicate\n",
|
| 166 |
+
"\n",
|
| 167 |
+
"# convert model parameters for inference if requested\n",
|
| 168 |
+
"if dtype == jnp.bfloat16:\n",
|
| 169 |
+
" model.params = model.to_bf16(model.params)\n",
|
| 170 |
+
"\n",
|
| 171 |
+
"model_params = replicate(model.params)\n",
|
| 172 |
+
"vqgan_params = replicate(vqgan.params)\n",
|
| 173 |
+
"clip_params = replicate(clip.params)"
|
| 174 |
+
]
|
| 175 |
+
},
|
| 176 |
+
{
|
| 177 |
+
"cell_type": "markdown",
|
| 178 |
+
"metadata": {
|
| 179 |
+
"id": "0A9AHQIgZ_qw"
|
| 180 |
+
},
|
| 181 |
+
"source": [
|
| 182 |
+
"Model functions are compiled and parallelized to take advantage of multiple devices."
|
| 183 |
+
]
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"cell_type": "code",
|
| 187 |
+
"execution_count": null,
|
| 188 |
+
"metadata": {
|
| 189 |
+
"id": "sOtoOmYsSYPz"
|
| 190 |
+
},
|
| 191 |
+
"outputs": [],
|
| 192 |
+
"source": [
|
| 193 |
+
"from functools import partial\n",
|
| 194 |
+
"\n",
|
| 195 |
+
"# model inference\n",
|
| 196 |
+
"@partial(jax.pmap, axis_name=\"batch\", static_broadcasted_argnums=(3, 4))\n",
|
| 197 |
+
"def p_generate(tokenized_prompt, key, params, top_k, top_p):\n",
|
| 198 |
+
" return model.generate(\n",
|
| 199 |
+
" **tokenized_prompt,\n",
|
| 200 |
+
" do_sample=True,\n",
|
| 201 |
+
" num_beams=1,\n",
|
| 202 |
+
" prng_key=key,\n",
|
| 203 |
+
" params=params,\n",
|
| 204 |
+
" top_k=top_k,\n",
|
| 205 |
+
" top_p=top_p,\n",
|
| 206 |
+
" max_length=257\n",
|
| 207 |
+
" )\n",
|
| 208 |
+
"\n",
|
| 209 |
+
"\n",
|
| 210 |
+
"# decode images\n",
|
| 211 |
+
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
| 212 |
+
"def p_decode(indices, params):\n",
|
| 213 |
+
" return vqgan.decode_code(indices, params=params)\n",
|
| 214 |
+
"\n",
|
| 215 |
+
"\n",
|
| 216 |
+
"# score images\n",
|
| 217 |
+
"@partial(jax.pmap, axis_name=\"batch\")\n",
|
| 218 |
+
"def p_clip(inputs, params):\n",
|
| 219 |
+
" logits = clip(params=params, **inputs).logits_per_image\n",
|
| 220 |
+
" return logits"
|
| 221 |
+
]
|
| 222 |
+
},
|
| 223 |
+
{
|
| 224 |
+
"cell_type": "markdown",
|
| 225 |
+
"metadata": {
|
| 226 |
+
"id": "HmVN6IBwapBA"
|
| 227 |
+
},
|
| 228 |
+
"source": [
|
| 229 |
+
"Keys are passed to the model on each device to generate unique inference per device."
|
| 230 |
+
]
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"cell_type": "code",
|
| 234 |
+
"execution_count": null,
|
| 235 |
+
"metadata": {
|
| 236 |
+
"id": "4CTXmlUkThhX"
|
| 237 |
+
},
|
| 238 |
+
"outputs": [],
|
| 239 |
+
"source": [
|
| 240 |
+
"import random\n",
|
| 241 |
+
"\n",
|
| 242 |
+
"# create a random key\n",
|
| 243 |
+
"seed = random.randint(0, 2 ** 32 - 1)\n",
|
| 244 |
+
"key = jax.random.PRNGKey(seed)"
|
| 245 |
+
]
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"cell_type": "markdown",
|
| 249 |
+
"metadata": {
|
| 250 |
+
"id": "BrnVyCo81pij"
|
| 251 |
+
},
|
| 252 |
+
"source": [
|
| 253 |
+
"## 🖍 Text Prompt"
|
| 254 |
+
]
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"cell_type": "markdown",
|
| 258 |
+
"metadata": {
|
| 259 |
+
"id": "rsmj0Aj5OQox"
|
| 260 |
+
},
|
| 261 |
+
"source": [
|
| 262 |
+
"Our model may require to normalize the prompt."
|
| 263 |
+
]
|
| 264 |
+
},
|
| 265 |
+
{
|
| 266 |
+
"cell_type": "code",
|
| 267 |
+
"execution_count": null,
|
| 268 |
+
"metadata": {
|
| 269 |
+
"id": "YjjhUychOVxm"
|
| 270 |
+
},
|
| 271 |
+
"outputs": [],
|
| 272 |
+
"source": [
|
| 273 |
+
"from dalle_mini.text import TextNormalizer\n",
|
| 274 |
+
"\n",
|
| 275 |
+
"text_normalizer = TextNormalizer() if model.config.normalize_text else None"
|
| 276 |
+
]
|
| 277 |
+
},
|
| 278 |
+
{
|
| 279 |
+
"cell_type": "markdown",
|
| 280 |
+
"metadata": {
|
| 281 |
+
"id": "BQ7fymSPyvF_"
|
| 282 |
+
},
|
| 283 |
+
"source": [
|
| 284 |
+
"Let's define a text prompt."
|
| 285 |
+
]
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"cell_type": "code",
|
| 289 |
+
"execution_count": null,
|
| 290 |
+
"metadata": {
|
| 291 |
+
"id": "x_0vI9ge1oKr"
|
| 292 |
+
},
|
| 293 |
+
"outputs": [],
|
| 294 |
+
"source": [
|
| 295 |
+
"prompt = \"a blue table\""
|
| 296 |
+
]
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"cell_type": "code",
|
| 300 |
+
"execution_count": null,
|
| 301 |
+
"metadata": {
|
| 302 |
+
"id": "VKjEZGjtO49k"
|
| 303 |
+
},
|
| 304 |
+
"outputs": [],
|
| 305 |
+
"source": [
|
| 306 |
+
"processed_prompt = text_normalizer(prompt) if model.config.normalize_text else prompt\n",
|
| 307 |
+
"processed_prompt"
|
| 308 |
+
]
|
| 309 |
+
},
|
| 310 |
+
{
|
| 311 |
+
"cell_type": "markdown",
|
| 312 |
+
"metadata": {
|
| 313 |
+
"id": "QUzYACWxOe5z"
|
| 314 |
+
},
|
| 315 |
+
"source": [
|
| 316 |
+
"We tokenize the prompt."
|
| 317 |
+
]
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"cell_type": "code",
|
| 321 |
+
"execution_count": null,
|
| 322 |
+
"metadata": {
|
| 323 |
+
"id": "n8e7MvGwOe5z"
|
| 324 |
+
},
|
| 325 |
+
"outputs": [],
|
| 326 |
+
"source": [
|
| 327 |
+
"tokenized_prompt = tokenizer(\n",
|
| 328 |
+
" processed_prompt,\n",
|
| 329 |
+
" return_tensors=\"jax\",\n",
|
| 330 |
+
" padding=\"max_length\",\n",
|
| 331 |
+
" truncation=True,\n",
|
| 332 |
+
" max_length=128,\n",
|
| 333 |
+
").data\n",
|
| 334 |
+
"tokenized_prompt"
|
| 335 |
+
]
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"cell_type": "markdown",
|
| 339 |
+
"metadata": {
|
| 340 |
+
"id": "_Y5dqFj7prMQ"
|
| 341 |
+
},
|
| 342 |
+
"source": [
|
| 343 |
+
"Notes:\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"* `0`: BOS, special token representing the beginning of a sequence\n",
|
| 346 |
+
"* `2`: EOS, special token representing the end of a sequence\n",
|
| 347 |
+
"* `1`: special token representing the padding of a sequence when requesting a specific length"
|
| 348 |
+
]
|
| 349 |
+
},
|
| 350 |
+
{
|
| 351 |
+
"cell_type": "markdown",
|
| 352 |
+
"metadata": {
|
| 353 |
+
"id": "-CEJBnuJOe5z"
|
| 354 |
+
},
|
| 355 |
+
"source": [
|
| 356 |
+
"Finally we replicate it onto each device."
|
| 357 |
+
]
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"cell_type": "code",
|
| 361 |
+
"execution_count": null,
|
| 362 |
+
"metadata": {
|
| 363 |
+
"id": "lQePgju5Oe5z"
|
| 364 |
+
},
|
| 365 |
+
"outputs": [],
|
| 366 |
+
"source": [
|
| 367 |
+
"tokenized_prompt = replicate(tokenized_prompt)"
|
| 368 |
+
]
|
| 369 |
+
},
|
| 370 |
+
{
|
| 371 |
+
"cell_type": "markdown",
|
| 372 |
+
"metadata": {
|
| 373 |
+
"id": "phQ9bhjRkgAZ"
|
| 374 |
+
},
|
| 375 |
+
"source": [
|
| 376 |
+
"## 🎨 Generate images\n",
|
| 377 |
+
"\n",
|
| 378 |
+
"We generate images using dalle-mini model and decode them with the VQGAN."
|
| 379 |
+
]
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"cell_type": "code",
|
| 383 |
+
"execution_count": null,
|
| 384 |
+
"metadata": {
|
| 385 |
+
"id": "d0wVkXpKqnHA"
|
| 386 |
+
},
|
| 387 |
+
"outputs": [],
|
| 388 |
+
"source": [
|
| 389 |
+
"# number of predictions\n",
|
| 390 |
+
"n_predictions = 32\n",
|
| 391 |
+
"\n",
|
| 392 |
+
"# We can customize top_k/top_p used for generating samples\n",
|
| 393 |
+
"gen_top_k = None\n",
|
| 394 |
+
"gen_top_p = None"
|
| 395 |
+
]
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"cell_type": "code",
|
| 399 |
+
"execution_count": null,
|
| 400 |
+
"metadata": {
|
| 401 |
+
"id": "SDjEx9JxR3v8"
|
| 402 |
+
},
|
| 403 |
+
"outputs": [],
|
| 404 |
+
"source": [
|
| 405 |
+
"from flax.training.common_utils import shard_prng_key\n",
|
| 406 |
+
"import numpy as np\n",
|
| 407 |
+
"from PIL import Image\n",
|
| 408 |
+
"from tqdm.notebook import trange\n",
|
| 409 |
+
"\n",
|
| 410 |
+
"# generate images\n",
|
| 411 |
+
"images = []\n",
|
| 412 |
+
"for i in trange(n_predictions // jax.device_count()):\n",
|
| 413 |
+
" # get a new key\n",
|
| 414 |
+
" key, subkey = jax.random.split(key)\n",
|
| 415 |
+
" # generate images\n",
|
| 416 |
+
" encoded_images = p_generate(\n",
|
| 417 |
+
" tokenized_prompt, shard_prng_key(subkey), model_params, gen_top_k, gen_top_p\n",
|
| 418 |
+
" )\n",
|
| 419 |
+
" # remove BOS\n",
|
| 420 |
+
" encoded_images = encoded_images.sequences[..., 1:]\n",
|
| 421 |
+
" # decode images\n",
|
| 422 |
+
" decoded_images = p_decode(encoded_images, vqgan_params)\n",
|
| 423 |
+
" decoded_images = decoded_images.clip(0.0, 1.0).reshape((-1, 256, 256, 3))\n",
|
| 424 |
+
" for img in decoded_images:\n",
|
| 425 |
+
" images.append(Image.fromarray(np.asarray(img * 255, dtype=np.uint8)))"
|
| 426 |
+
]
|
| 427 |
+
},
|
| 428 |
+
{
|
| 429 |
+
"cell_type": "markdown",
|
| 430 |
+
"metadata": {
|
| 431 |
+
"id": "tw02wG9zGmyB"
|
| 432 |
+
},
|
| 433 |
+
"source": [
|
| 434 |
+
"Let's calculate their score with CLIP."
|
| 435 |
+
]
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"cell_type": "code",
|
| 439 |
+
"execution_count": null,
|
| 440 |
+
"metadata": {
|
| 441 |
+
"id": "FoLXpjCmGpju"
|
| 442 |
+
},
|
| 443 |
+
"outputs": [],
|
| 444 |
+
"source": [
|
| 445 |
+
"from flax.training.common_utils import shard\n",
|
| 446 |
+
"\n",
|
| 447 |
+
"# get clip scores\n",
|
| 448 |
+
"clip_inputs = processor(\n",
|
| 449 |
+
" text=[prompt] * jax.device_count(),\n",
|
| 450 |
+
" images=images,\n",
|
| 451 |
+
" return_tensors=\"np\",\n",
|
| 452 |
+
" padding=\"max_length\",\n",
|
| 453 |
+
" max_length=77,\n",
|
| 454 |
+
" truncation=True,\n",
|
| 455 |
+
").data\n",
|
| 456 |
+
"logits = p_clip(shard(clip_inputs), clip_params)\n",
|
| 457 |
+
"logits = logits.squeeze().flatten()"
|
| 458 |
+
]
|
| 459 |
+
},
|
| 460 |
+
{
|
| 461 |
+
"cell_type": "markdown",
|
| 462 |
+
"metadata": {
|
| 463 |
+
"id": "4AAWRm70LgED"
|
| 464 |
+
},
|
| 465 |
+
"source": [
|
| 466 |
+
"Let's display images ranked by CLIP score."
|
| 467 |
+
]
|
| 468 |
+
},
|
| 469 |
+
{
|
| 470 |
+
"cell_type": "code",
|
| 471 |
+
"execution_count": null,
|
| 472 |
+
"metadata": {
|
| 473 |
+
"id": "zsgxxubLLkIu"
|
| 474 |
+
},
|
| 475 |
+
"outputs": [],
|
| 476 |
+
"source": [
|
| 477 |
+
"print(f\"Prompt: {prompt}\\n\")\n",
|
| 478 |
+
"for idx in logits.argsort()[::-1]:\n",
|
| 479 |
+
" display(images[idx])\n",
|
| 480 |
+
" print(f\"Score: {logits[idx]:.2f}\\n\")"
|
| 481 |
+
]
|
| 482 |
+
}
|
| 483 |
+
],
|
| 484 |
+
"metadata": {
|
| 485 |
+
"accelerator": "GPU",
|
| 486 |
+
"colab": {
|
| 487 |
+
"collapsed_sections": [],
|
| 488 |
+
"include_colab_link": true,
|
| 489 |
+
"machine_shape": "hm",
|
| 490 |
+
"name": "DALL·E mini - Inference pipeline.ipynb",
|
| 491 |
+
"provenance": []
|
| 492 |
+
},
|
| 493 |
+
"kernelspec": {
|
| 494 |
+
"display_name": "Python 3 (ipykernel)",
|
| 495 |
+
"language": "python",
|
| 496 |
+
"name": "python3"
|
| 497 |
+
},
|
| 498 |
+
"language_info": {
|
| 499 |
+
"codemirror_mode": {
|
| 500 |
+
"name": "ipython",
|
| 501 |
+
"version": 3
|
| 502 |
+
},
|
| 503 |
+
"file_extension": ".py",
|
| 504 |
+
"mimetype": "text/x-python",
|
| 505 |
+
"name": "python",
|
| 506 |
+
"nbconvert_exporter": "python",
|
| 507 |
+
"pygments_lexer": "ipython3",
|
| 508 |
+
"version": "3.9.7"
|
| 509 |
+
}
|
| 510 |
+
},
|
| 511 |
+
"nbformat": 4,
|
| 512 |
+
"nbformat_minor": 0
|
| 513 |
+
}
|
|
|
|
|
|