Spaces:
Running
Running
Merge pull request #111 from borisdayma/feat-data
Browse files- dalle_mini/data.py +259 -0
- dev/seq2seq/run_seq2seq_flax.py +35 -220
dalle_mini/data.py
ADDED
|
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass, field
|
| 2 |
+
from datasets import load_dataset, Dataset
|
| 3 |
+
from functools import partial
|
| 4 |
+
import numpy as np
|
| 5 |
+
import jax
|
| 6 |
+
import jax.numpy as jnp
|
| 7 |
+
from flax.training.common_utils import shard
|
| 8 |
+
from .text import TextNormalizer
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@dataclass
|
| 12 |
+
class Dataset:
|
| 13 |
+
dataset_repo_or_path: str
|
| 14 |
+
train_file: str = None
|
| 15 |
+
validation_file: str = None
|
| 16 |
+
dataset_type: str = "dataset"
|
| 17 |
+
streaming: bool = True
|
| 18 |
+
use_auth_token: bool = False
|
| 19 |
+
text_column: str = "caption"
|
| 20 |
+
encoding_column: str = "encoding"
|
| 21 |
+
max_source_length: int = 128
|
| 22 |
+
max_train_samples: int = None
|
| 23 |
+
max_eval_samples: int = None
|
| 24 |
+
preprocessing_num_workers: int = None
|
| 25 |
+
overwrite_cache: bool = False
|
| 26 |
+
do_train: bool = False
|
| 27 |
+
do_eval: bool = True
|
| 28 |
+
seed_dataset: int = None
|
| 29 |
+
train_dataset: Dataset = field(init=False)
|
| 30 |
+
eval_dataset: Dataset = field(init=False)
|
| 31 |
+
rng_dataset: jnp.ndarray = field(init=False)
|
| 32 |
+
|
| 33 |
+
def __post_init__(self):
|
| 34 |
+
# define data_files
|
| 35 |
+
if self.train_file is not None or self.validation_file is not None:
|
| 36 |
+
data_files = {
|
| 37 |
+
"train": self.train_file,
|
| 38 |
+
"validation": self.validation_file,
|
| 39 |
+
}
|
| 40 |
+
else:
|
| 41 |
+
data_files = None
|
| 42 |
+
|
| 43 |
+
# load dataset
|
| 44 |
+
dataset = load_dataset(
|
| 45 |
+
self.dataset_repo_or_path,
|
| 46 |
+
data_files=data_files,
|
| 47 |
+
streaming=self.streaming,
|
| 48 |
+
use_auth_token=self.use_auth_token,
|
| 49 |
+
)
|
| 50 |
+
if self.do_train:
|
| 51 |
+
if "train" not in dataset:
|
| 52 |
+
raise ValueError("Training requires a training dataset")
|
| 53 |
+
self.train_dataset = dataset["train"]
|
| 54 |
+
if self.max_train_samples is not None:
|
| 55 |
+
self.train_dataset = (
|
| 56 |
+
self.train_dataset.take(self.max_train_samples)
|
| 57 |
+
if self.streaming
|
| 58 |
+
else self.train_dataset.select(range(self.max_train_samples))
|
| 59 |
+
)
|
| 60 |
+
if self.do_eval:
|
| 61 |
+
if "validation" not in dataset:
|
| 62 |
+
raise ValueError("Evaluating requires a validation dataset")
|
| 63 |
+
self.eval_dataset = dataset["validation"]
|
| 64 |
+
if self.max_eval_samples is not None:
|
| 65 |
+
self.eval_dataset = (
|
| 66 |
+
self.eval_dataset.take(self.max_eval_samples)
|
| 67 |
+
if self.streaming
|
| 68 |
+
else self.eval_dataset.select(range(self.max_eval_samples))
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def preprocess(self, tokenizer, decoder_start_token_id, normalize_text):
|
| 72 |
+
if self.streaming:
|
| 73 |
+
# we need to shuffle early in streaming mode
|
| 74 |
+
if hasattr(self, "train_dataset"):
|
| 75 |
+
self.train_dataset = self.train_dataset.shuffle(1000, self.seed_dataset)
|
| 76 |
+
else:
|
| 77 |
+
# prepare rng for later shuffling
|
| 78 |
+
if self.seed_dataset is None:
|
| 79 |
+
self.seed_dataset = np.random.get_state()[1][0]
|
| 80 |
+
self.rng_dataset = jax.random.PRNGKey(self.seed_dataset)
|
| 81 |
+
|
| 82 |
+
# normalize text
|
| 83 |
+
if normalize_text:
|
| 84 |
+
text_normalizer = TextNormalizer()
|
| 85 |
+
partial_normalize_function = partial(
|
| 86 |
+
normalize_function,
|
| 87 |
+
text_column=self.text_column,
|
| 88 |
+
text_normalizer=text_normalizer,
|
| 89 |
+
)
|
| 90 |
+
for ds in ["train_dataset", "eval_dataset"]:
|
| 91 |
+
if hasattr(self, ds):
|
| 92 |
+
setattr(
|
| 93 |
+
self,
|
| 94 |
+
ds,
|
| 95 |
+
(
|
| 96 |
+
getattr(self, ds).map(partial_normalize_function)
|
| 97 |
+
if self.streaming
|
| 98 |
+
else getattr(self, ds).map(
|
| 99 |
+
partial_normalize_function,
|
| 100 |
+
num_proc=self.preprocessing_num_workers,
|
| 101 |
+
load_from_cache_file=not self.overwrite_cache,
|
| 102 |
+
desc="Normalizing datasets",
|
| 103 |
+
)
|
| 104 |
+
),
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# preprocess
|
| 108 |
+
partial_preprocess_function = partial(
|
| 109 |
+
preprocess_function,
|
| 110 |
+
tokenizer=tokenizer,
|
| 111 |
+
text_column=self.text_column,
|
| 112 |
+
encoding_column=self.encoding_column,
|
| 113 |
+
max_source_length=self.max_source_length,
|
| 114 |
+
decoder_start_token_id=decoder_start_token_id,
|
| 115 |
+
)
|
| 116 |
+
for ds in ["train_dataset", "eval_dataset"]:
|
| 117 |
+
if hasattr(self, ds):
|
| 118 |
+
setattr(
|
| 119 |
+
self,
|
| 120 |
+
ds,
|
| 121 |
+
(
|
| 122 |
+
getattr(self, ds).map(
|
| 123 |
+
partial_preprocess_function,
|
| 124 |
+
batched=True,
|
| 125 |
+
)
|
| 126 |
+
if self.streaming
|
| 127 |
+
else getattr(self, ds).map(
|
| 128 |
+
partial_preprocess_function,
|
| 129 |
+
batched=True,
|
| 130 |
+
remove_columns=getattr(ds, "column_names"),
|
| 131 |
+
num_proc=self.preprocessing_num_workers,
|
| 132 |
+
load_from_cache_file=not self.overwrite_cache,
|
| 133 |
+
desc="Preprocessing datasets",
|
| 134 |
+
)
|
| 135 |
+
),
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
def dataloader(self, split, batch_size, epoch=None):
|
| 139 |
+
def _dataloader_datasets_non_streaming(
|
| 140 |
+
dataset: Dataset,
|
| 141 |
+
batch_size: int,
|
| 142 |
+
rng: jax.random.PRNGKey = None,
|
| 143 |
+
):
|
| 144 |
+
"""
|
| 145 |
+
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
| 146 |
+
Shuffle batches if `shuffle` is `True`.
|
| 147 |
+
"""
|
| 148 |
+
steps_per_epoch = len(dataset) // batch_size
|
| 149 |
+
|
| 150 |
+
if rng is not None:
|
| 151 |
+
batch_idx = jax.random.permutation(rng, len(dataset))
|
| 152 |
+
else:
|
| 153 |
+
batch_idx = jnp.arange(len(dataset))
|
| 154 |
+
|
| 155 |
+
batch_idx = batch_idx[
|
| 156 |
+
: steps_per_epoch * batch_size
|
| 157 |
+
] # Skip incomplete batch.
|
| 158 |
+
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
|
| 159 |
+
|
| 160 |
+
for idx in batch_idx:
|
| 161 |
+
batch = dataset[idx]
|
| 162 |
+
batch = {k: jnp.array(v) for k, v in batch.items()}
|
| 163 |
+
batch = shard(batch)
|
| 164 |
+
yield batch
|
| 165 |
+
|
| 166 |
+
def _dataloader_datasets_streaming(dataset: Dataset, batch_size: int):
|
| 167 |
+
keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"]
|
| 168 |
+
batch = {k: [] for k in keys}
|
| 169 |
+
for item in dataset:
|
| 170 |
+
for k, v in item.items():
|
| 171 |
+
batch[k].append(v)
|
| 172 |
+
if len(batch[keys[0]]) == batch_size:
|
| 173 |
+
batch = {k: jnp.array(v) for k, v in batch.items()}
|
| 174 |
+
batch = shard(batch)
|
| 175 |
+
yield batch
|
| 176 |
+
batch = {k: [] for k in keys}
|
| 177 |
+
|
| 178 |
+
if split == "train":
|
| 179 |
+
ds = self.train_dataset
|
| 180 |
+
elif split == "eval":
|
| 181 |
+
ds = self.eval_dataset
|
| 182 |
+
else:
|
| 183 |
+
raise ValueError(f'split must be "train" or "eval", got {split}')
|
| 184 |
+
|
| 185 |
+
if self.streaming:
|
| 186 |
+
if split == "train":
|
| 187 |
+
ds.set_epoch(epoch)
|
| 188 |
+
return _dataloader_datasets_streaming(ds, batch_size)
|
| 189 |
+
else:
|
| 190 |
+
if split == "train":
|
| 191 |
+
self.rng_dataset, input_rng = jax.random.split(self.rng_dataset)
|
| 192 |
+
return _dataloader_datasets_non_streaming(ds, batch_size, input_rng)
|
| 193 |
+
|
| 194 |
+
@property
|
| 195 |
+
def length(self):
|
| 196 |
+
len_train_dataset, len_eval_dataset = None, None
|
| 197 |
+
if self.streaming:
|
| 198 |
+
# we don't know the length, let's just assume max_samples if defined
|
| 199 |
+
if self.max_train_samples is not None:
|
| 200 |
+
len_train_dataset = self.max_train_samples
|
| 201 |
+
if self.max_eval_samples is not None:
|
| 202 |
+
len_eval_dataset = self.max_eval_samples
|
| 203 |
+
else:
|
| 204 |
+
len_train_dataset = (
|
| 205 |
+
len(self.train_dataset) if hasattr(self, "train_dataset") else None
|
| 206 |
+
)
|
| 207 |
+
len_eval_dataset = (
|
| 208 |
+
len(self.eval_dataset) if hasattr(self, "eval_dataset") else None
|
| 209 |
+
)
|
| 210 |
+
return len_train_dataset, len_eval_dataset
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
|
| 214 |
+
"""
|
| 215 |
+
Shift input ids one token to the right.
|
| 216 |
+
"""
|
| 217 |
+
shifted_input_ids = np.zeros(input_ids.shape)
|
| 218 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1]
|
| 219 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 220 |
+
return shifted_input_ids
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
def normalize_function(example, text_column, text_normalizer):
|
| 224 |
+
example[text_column] = text_normalizer(example[text_column])
|
| 225 |
+
return example
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def preprocess_function(
|
| 229 |
+
examples,
|
| 230 |
+
tokenizer,
|
| 231 |
+
text_column,
|
| 232 |
+
encoding_column,
|
| 233 |
+
max_source_length,
|
| 234 |
+
decoder_start_token_id,
|
| 235 |
+
):
|
| 236 |
+
inputs = examples[text_column]
|
| 237 |
+
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
| 238 |
+
model_inputs = tokenizer(
|
| 239 |
+
inputs,
|
| 240 |
+
max_length=max_source_length,
|
| 241 |
+
padding="max_length",
|
| 242 |
+
truncation=True,
|
| 243 |
+
return_tensors="np",
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# set up targets
|
| 247 |
+
# Note: labels correspond to our target indices
|
| 248 |
+
# decoder input ids are the same but shifted to the right with bos at the beginning (and without last token)
|
| 249 |
+
labels = examples[encoding_column]
|
| 250 |
+
labels = np.asarray(labels)
|
| 251 |
+
|
| 252 |
+
# We need the labels, in addition to the decoder_input_ids, for the compute_loss function
|
| 253 |
+
model_inputs["labels"] = labels
|
| 254 |
+
|
| 255 |
+
# In our case, this prepends the bos token and removes the last one
|
| 256 |
+
decoder_input_ids = shift_tokens_right(labels, decoder_start_token_id)
|
| 257 |
+
model_inputs["decoder_input_ids"] = decoder_input_ids
|
| 258 |
+
|
| 259 |
+
return model_inputs
|
dev/seq2seq/run_seq2seq_flax.py
CHANGED
|
@@ -28,9 +28,9 @@ from typing import Callable, Optional
|
|
| 28 |
import json
|
| 29 |
|
| 30 |
import datasets
|
| 31 |
-
|
| 32 |
-
from datasets import Dataset, load_dataset
|
| 33 |
from tqdm import tqdm
|
|
|
|
| 34 |
|
| 35 |
import jax
|
| 36 |
import jax.numpy as jnp
|
|
@@ -40,7 +40,7 @@ from flax import jax_utils, traverse_util
|
|
| 40 |
from flax.serialization import from_bytes, to_bytes
|
| 41 |
from flax.jax_utils import unreplicate
|
| 42 |
from flax.training import train_state
|
| 43 |
-
from flax.training.common_utils import get_metrics, onehot,
|
| 44 |
from transformers import (
|
| 45 |
AutoTokenizer,
|
| 46 |
HfArgumentParser,
|
|
@@ -49,7 +49,7 @@ from transformers.models.bart.modeling_flax_bart import BartConfig
|
|
| 49 |
|
| 50 |
import wandb
|
| 51 |
|
| 52 |
-
from dalle_mini.
|
| 53 |
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
| 54 |
|
| 55 |
logger = logging.getLogger(__name__)
|
|
@@ -120,18 +120,21 @@ class DataTrainingArguments:
|
|
| 120 |
"help": "The name of the column in the datasets containing the image encodings."
|
| 121 |
},
|
| 122 |
)
|
| 123 |
-
dataset_repo_or_path:
|
| 124 |
default=None,
|
| 125 |
metadata={"help": "The dataset repository containing encoded files."},
|
| 126 |
)
|
| 127 |
train_file: Optional[str] = field(
|
| 128 |
-
default=None,
|
|
|
|
| 129 |
)
|
| 130 |
validation_file: Optional[str] = field(
|
| 131 |
default=None,
|
| 132 |
-
metadata={
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
| 135 |
)
|
| 136 |
# data loading should not be a bottleneck so we use "streaming" mode by default
|
| 137 |
streaming: bool = field(
|
|
@@ -177,6 +180,13 @@ class DataTrainingArguments:
|
|
| 177 |
"help": "Overwrite the cached training and evaluation sets. Not used in streaming mode."
|
| 178 |
},
|
| 179 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
def __post_init__(self):
|
| 182 |
if self.dataset_repo_or_path is None:
|
|
@@ -277,13 +287,6 @@ class TrainingArguments:
|
|
| 277 |
"help": "Random seed for the model that will be set at the beginning of training."
|
| 278 |
},
|
| 279 |
)
|
| 280 |
-
# default seed of None ensures we don't repeat the same items if script was interrupted during an epoch
|
| 281 |
-
seed_dataset: int = field(
|
| 282 |
-
default=None,
|
| 283 |
-
metadata={
|
| 284 |
-
"help": "Random seed for the dataset that will be set at the beginning of training."
|
| 285 |
-
},
|
| 286 |
-
)
|
| 287 |
|
| 288 |
push_to_hub: bool = field(
|
| 289 |
default=False,
|
|
@@ -327,45 +330,6 @@ class TrainState(train_state.TrainState):
|
|
| 327 |
)
|
| 328 |
|
| 329 |
|
| 330 |
-
def data_loader(
|
| 331 |
-
dataset: Dataset,
|
| 332 |
-
batch_size: int,
|
| 333 |
-
rng: jax.random.PRNGKey = None,
|
| 334 |
-
):
|
| 335 |
-
"""
|
| 336 |
-
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
| 337 |
-
Shuffle batches if `shuffle` is `True`.
|
| 338 |
-
"""
|
| 339 |
-
steps_per_epoch = len(dataset) // batch_size
|
| 340 |
-
|
| 341 |
-
if rng is not None:
|
| 342 |
-
batch_idx = jax.random.permutation(rng, len(dataset))
|
| 343 |
-
else:
|
| 344 |
-
batch_idx = jnp.arange(len(dataset))
|
| 345 |
-
|
| 346 |
-
batch_idx = batch_idx[: steps_per_epoch * batch_size] # Skip incomplete batch.
|
| 347 |
-
batch_idx = batch_idx.reshape((steps_per_epoch, batch_size))
|
| 348 |
-
|
| 349 |
-
for idx in batch_idx:
|
| 350 |
-
batch = dataset[idx]
|
| 351 |
-
batch = {k: jnp.array(v) for k, v in batch.items()}
|
| 352 |
-
batch = shard(batch)
|
| 353 |
-
yield batch
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
def data_loader_streaming(dataset: Dataset, batch_size: int):
|
| 357 |
-
keys = ["input_ids", "attention_mask", "labels", "decoder_input_ids"]
|
| 358 |
-
batch = {k: [] for k in keys}
|
| 359 |
-
for item in dataset:
|
| 360 |
-
for k, v in item.items():
|
| 361 |
-
batch[k].append(v)
|
| 362 |
-
if len(batch[keys[0]]) == batch_size:
|
| 363 |
-
batch = {k: jnp.array(v) for k, v in batch.items()}
|
| 364 |
-
batch = shard(batch)
|
| 365 |
-
yield batch
|
| 366 |
-
batch = {k: [] for k in keys}
|
| 367 |
-
|
| 368 |
-
|
| 369 |
def create_learning_rate_fn(
|
| 370 |
num_warmup_steps: int,
|
| 371 |
learning_rate: float,
|
|
@@ -447,18 +411,10 @@ def main():
|
|
| 447 |
logger.info(f"Training/evaluation parameters {training_args}")
|
| 448 |
|
| 449 |
# Load dataset
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
}
|
| 455 |
-
else:
|
| 456 |
-
data_files = None
|
| 457 |
-
dataset = load_dataset(
|
| 458 |
-
data_args.dataset_repo_or_path,
|
| 459 |
-
data_files=data_files,
|
| 460 |
-
streaming=data_args.streaming,
|
| 461 |
-
use_auth_token=data_args.use_auth_token,
|
| 462 |
)
|
| 463 |
|
| 464 |
# Set up wandb run
|
|
@@ -552,141 +508,17 @@ def main():
|
|
| 552 |
use_fast=True,
|
| 553 |
)
|
| 554 |
|
| 555 |
-
|
| 556 |
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
| 557 |
|
| 558 |
# Preprocessing the datasets.
|
| 559 |
-
# We need to tokenize inputs and targets.
|
| 560 |
-
|
| 561 |
-
# Get the column names for input/target.
|
| 562 |
-
text_column = data_args.text_column
|
| 563 |
-
encoding_column = data_args.encoding_column
|
| 564 |
-
|
| 565 |
-
def shift_tokens_right(input_ids: np.array, decoder_start_token_id: int):
|
| 566 |
-
"""
|
| 567 |
-
Shift input ids one token to the right.
|
| 568 |
-
"""
|
| 569 |
-
shifted_input_ids = np.zeros(input_ids.shape)
|
| 570 |
-
shifted_input_ids[:, 1:] = input_ids[:, :-1]
|
| 571 |
-
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 572 |
-
return shifted_input_ids
|
| 573 |
-
|
| 574 |
-
text_normalizer = TextNormalizer() if model.config.normalize_text else None
|
| 575 |
-
|
| 576 |
-
def normalize_text(example):
|
| 577 |
-
example[text_column] = text_normalizer(example[text_column])
|
| 578 |
-
return example
|
| 579 |
-
|
| 580 |
-
def preprocess_function(examples):
|
| 581 |
-
inputs = examples[text_column]
|
| 582 |
-
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
| 583 |
-
model_inputs = tokenizer(
|
| 584 |
-
inputs,
|
| 585 |
-
max_length=data_args.max_source_length,
|
| 586 |
-
padding="max_length",
|
| 587 |
-
truncation=True,
|
| 588 |
-
return_tensors="np",
|
| 589 |
-
)
|
| 590 |
-
|
| 591 |
-
# set up targets
|
| 592 |
-
# Note: labels correspond to our target indices
|
| 593 |
-
# decoder input ids are the same but shifted to the right with bos at the beginning (and without last token)
|
| 594 |
-
labels = examples[encoding_column]
|
| 595 |
-
labels = np.asarray(labels)
|
| 596 |
-
|
| 597 |
-
# We need the labels, in addition to the decoder_input_ids, for the compute_loss function
|
| 598 |
-
model_inputs["labels"] = labels
|
| 599 |
-
|
| 600 |
-
# In our case, this prepends the bos token and removes the last one
|
| 601 |
-
decoder_input_ids = shift_tokens_right(
|
| 602 |
-
labels, model.config.decoder_start_token_id
|
| 603 |
-
)
|
| 604 |
-
model_inputs["decoder_input_ids"] = decoder_input_ids
|
| 605 |
-
|
| 606 |
-
return model_inputs
|
| 607 |
-
|
| 608 |
-
if training_args.do_train:
|
| 609 |
-
if "train" not in dataset:
|
| 610 |
-
raise ValueError("--do_train requires a train dataset")
|
| 611 |
-
train_dataset = dataset["train"]
|
| 612 |
-
if data_args.max_train_samples is not None:
|
| 613 |
-
train_dataset = (
|
| 614 |
-
train_dataset.take(data_args.max_train_samples)
|
| 615 |
-
if data_args.streaming
|
| 616 |
-
else train_dataset.select(range(data_args.max_train_samples))
|
| 617 |
-
)
|
| 618 |
-
if data_args.streaming:
|
| 619 |
-
train_dataset = train_dataset.shuffle(1000, training_args.seed_dataset)
|
| 620 |
-
else:
|
| 621 |
-
seed_dataset = (
|
| 622 |
-
training_args.seed_dataset
|
| 623 |
-
if training_args.seed_dataset is not None
|
| 624 |
-
else np.random.get_state()[1][0]
|
| 625 |
-
)
|
| 626 |
-
rng_dataset = jax.random.PRNGKey(seed_dataset)
|
| 627 |
-
if model.config.normalize_text:
|
| 628 |
-
train_dataset = (
|
| 629 |
-
train_dataset.map(normalize_text)
|
| 630 |
-
if data_args.streaming
|
| 631 |
-
else train_dataset.map(
|
| 632 |
-
normalize_text,
|
| 633 |
-
num_proc=data_args.preprocessing_num_workers,
|
| 634 |
-
load_from_cache_file=not data_args.overwrite_cache,
|
| 635 |
-
desc="Normalizing the validation dataset",
|
| 636 |
-
)
|
| 637 |
-
)
|
| 638 |
-
train_dataset = (
|
| 639 |
-
train_dataset.map(
|
| 640 |
-
preprocess_function,
|
| 641 |
-
batched=True,
|
| 642 |
-
)
|
| 643 |
-
if data_args.streaming
|
| 644 |
-
else train_dataset.map(
|
| 645 |
-
preprocess_function,
|
| 646 |
-
batched=True,
|
| 647 |
-
num_proc=data_args.preprocessing_num_workers,
|
| 648 |
-
remove_columns=train_dataset.column_names,
|
| 649 |
-
load_from_cache_file=not data_args.overwrite_cache,
|
| 650 |
-
desc="Running tokenizer on validation dataset",
|
| 651 |
-
)
|
| 652 |
-
)
|
| 653 |
|
| 654 |
-
|
| 655 |
-
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
|
| 659 |
-
eval_dataset = (
|
| 660 |
-
eval_dataset.take(data_args.max_train_samples)
|
| 661 |
-
if data_args.streaming
|
| 662 |
-
else eval_dataset.select(range(data_args.max_train_samples))
|
| 663 |
-
)
|
| 664 |
-
if model.config.normalize_text:
|
| 665 |
-
eval_dataset = (
|
| 666 |
-
eval_dataset.map(normalize_text)
|
| 667 |
-
if data_args.streaming
|
| 668 |
-
else eval_dataset.map(
|
| 669 |
-
normalize_text,
|
| 670 |
-
num_proc=data_args.preprocessing_num_workers,
|
| 671 |
-
load_from_cache_file=not data_args.overwrite_cache,
|
| 672 |
-
desc="Normalizing the validation dataset",
|
| 673 |
-
)
|
| 674 |
-
)
|
| 675 |
-
eval_dataset = (
|
| 676 |
-
eval_dataset.map(
|
| 677 |
-
preprocess_function,
|
| 678 |
-
batched=True,
|
| 679 |
-
)
|
| 680 |
-
if data_args.streaming
|
| 681 |
-
else eval_dataset.map(
|
| 682 |
-
preprocess_function,
|
| 683 |
-
batched=True,
|
| 684 |
-
num_proc=data_args.preprocessing_num_workers,
|
| 685 |
-
remove_columns=eval_dataset.column_names,
|
| 686 |
-
load_from_cache_file=not data_args.overwrite_cache,
|
| 687 |
-
desc="Running tokenizer on validation dataset",
|
| 688 |
-
)
|
| 689 |
-
)
|
| 690 |
|
| 691 |
# Initialize our training
|
| 692 |
rng = jax.random.PRNGKey(training_args.seed_model)
|
|
@@ -699,16 +531,7 @@ def main():
|
|
| 699 |
)
|
| 700 |
batch_size_per_update = train_batch_size * training_args.gradient_accumulation_steps
|
| 701 |
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
| 702 |
-
len_train_dataset, len_eval_dataset =
|
| 703 |
-
if data_args.streaming:
|
| 704 |
-
# we don't know the length, let's just assume max_samples if defined
|
| 705 |
-
if data_args.max_train_samples is not None:
|
| 706 |
-
len_train_dataset = data_args.max_train_samples
|
| 707 |
-
if data_args.max_eval_samples is not None:
|
| 708 |
-
len_eval_dataset = data_args.max_eval_samples
|
| 709 |
-
else:
|
| 710 |
-
len_train_dataset = len(train_dataset)
|
| 711 |
-
len_eval_dataset = len(eval_dataset)
|
| 712 |
steps_per_epoch = (
|
| 713 |
len_train_dataset // train_batch_size if len_train_dataset is not None else None
|
| 714 |
)
|
|
@@ -854,8 +677,8 @@ def main():
|
|
| 854 |
# add interesting config parameters
|
| 855 |
wandb.config.update(
|
| 856 |
{
|
| 857 |
-
"
|
| 858 |
-
"
|
| 859 |
"batch_size_per_update": batch_size_per_update,
|
| 860 |
}
|
| 861 |
)
|
|
@@ -867,10 +690,7 @@ def main():
|
|
| 867 |
# ======================== Evaluating ==============================
|
| 868 |
eval_metrics = []
|
| 869 |
if training_args.do_eval:
|
| 870 |
-
|
| 871 |
-
eval_loader = data_loader_streaming(eval_dataset, eval_batch_size)
|
| 872 |
-
else:
|
| 873 |
-
eval_loader = data_loader(eval_dataset, eval_batch_size)
|
| 874 |
eval_steps = (
|
| 875 |
len_eval_dataset // eval_batch_size
|
| 876 |
if len_eval_dataset is not None
|
|
@@ -985,12 +805,7 @@ def main():
|
|
| 985 |
wandb_log({"train/epoch": epoch}, step=unreplicate(state.step))
|
| 986 |
|
| 987 |
# Generate an epoch by shuffling sampling indices from the train dataset
|
| 988 |
-
|
| 989 |
-
train_dataset.set_epoch(epoch) # shuffle dataset
|
| 990 |
-
train_loader = data_loader_streaming(train_dataset, train_batch_size)
|
| 991 |
-
else:
|
| 992 |
-
rng_dataset, input_rng = jax.random.split(rng_dataset)
|
| 993 |
-
train_loader = data_loader(train_dataset, train_batch_size, rng=input_rng)
|
| 994 |
# train
|
| 995 |
for batch in tqdm(
|
| 996 |
train_loader,
|
|
|
|
| 28 |
import json
|
| 29 |
|
| 30 |
import datasets
|
| 31 |
+
from datasets import Dataset
|
|
|
|
| 32 |
from tqdm import tqdm
|
| 33 |
+
from dataclasses import asdict
|
| 34 |
|
| 35 |
import jax
|
| 36 |
import jax.numpy as jnp
|
|
|
|
| 40 |
from flax.serialization import from_bytes, to_bytes
|
| 41 |
from flax.jax_utils import unreplicate
|
| 42 |
from flax.training import train_state
|
| 43 |
+
from flax.training.common_utils import get_metrics, onehot, shard_prng_key
|
| 44 |
from transformers import (
|
| 45 |
AutoTokenizer,
|
| 46 |
HfArgumentParser,
|
|
|
|
| 49 |
|
| 50 |
import wandb
|
| 51 |
|
| 52 |
+
from dalle_mini.data import Dataset
|
| 53 |
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
| 54 |
|
| 55 |
logger = logging.getLogger(__name__)
|
|
|
|
| 120 |
"help": "The name of the column in the datasets containing the image encodings."
|
| 121 |
},
|
| 122 |
)
|
| 123 |
+
dataset_repo_or_path: str = field(
|
| 124 |
default=None,
|
| 125 |
metadata={"help": "The dataset repository containing encoded files."},
|
| 126 |
)
|
| 127 |
train_file: Optional[str] = field(
|
| 128 |
+
default=None,
|
| 129 |
+
metadata={"help": "The input training data file (glob acceptable)."},
|
| 130 |
)
|
| 131 |
validation_file: Optional[str] = field(
|
| 132 |
default=None,
|
| 133 |
+
metadata={"help": "An optional input evaluation data file (glob acceptable)."},
|
| 134 |
+
)
|
| 135 |
+
dataset_type: str = field(
|
| 136 |
+
default="datasets",
|
| 137 |
+
metadata={"help": "Either 🤗 'dataset' (default) or 'webdataset'."},
|
| 138 |
)
|
| 139 |
# data loading should not be a bottleneck so we use "streaming" mode by default
|
| 140 |
streaming: bool = field(
|
|
|
|
| 180 |
"help": "Overwrite the cached training and evaluation sets. Not used in streaming mode."
|
| 181 |
},
|
| 182 |
)
|
| 183 |
+
# default seed of None ensures we don't repeat the same items if script was interrupted during an epoch
|
| 184 |
+
seed_dataset: int = field(
|
| 185 |
+
default=None,
|
| 186 |
+
metadata={
|
| 187 |
+
"help": "Random seed for the dataset that will be set at the beginning of training."
|
| 188 |
+
},
|
| 189 |
+
)
|
| 190 |
|
| 191 |
def __post_init__(self):
|
| 192 |
if self.dataset_repo_or_path is None:
|
|
|
|
| 287 |
"help": "Random seed for the model that will be set at the beginning of training."
|
| 288 |
},
|
| 289 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
push_to_hub: bool = field(
|
| 292 |
default=False,
|
|
|
|
| 330 |
)
|
| 331 |
|
| 332 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
def create_learning_rate_fn(
|
| 334 |
num_warmup_steps: int,
|
| 335 |
learning_rate: float,
|
|
|
|
| 411 |
logger.info(f"Training/evaluation parameters {training_args}")
|
| 412 |
|
| 413 |
# Load dataset
|
| 414 |
+
dataset = Dataset(
|
| 415 |
+
**asdict(data_args),
|
| 416 |
+
do_train=training_args.do_train,
|
| 417 |
+
do_eval=training_args.do_eval,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
)
|
| 419 |
|
| 420 |
# Set up wandb run
|
|
|
|
| 508 |
use_fast=True,
|
| 509 |
)
|
| 510 |
|
| 511 |
+
logger.info(f"TPUs: {jax.device_count()}")
|
| 512 |
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
| 513 |
|
| 514 |
# Preprocessing the datasets.
|
| 515 |
+
# We need to normalize and tokenize inputs and targets.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
|
| 517 |
+
dataset.preprocess(
|
| 518 |
+
tokenizer=tokenizer,
|
| 519 |
+
decoder_start_token_id=model.config.decoder_start_token_id,
|
| 520 |
+
normalize_text=model.config.normalize_text,
|
| 521 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
| 523 |
# Initialize our training
|
| 524 |
rng = jax.random.PRNGKey(training_args.seed_model)
|
|
|
|
| 531 |
)
|
| 532 |
batch_size_per_update = train_batch_size * training_args.gradient_accumulation_steps
|
| 533 |
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
| 534 |
+
len_train_dataset, len_eval_dataset = dataset.length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
steps_per_epoch = (
|
| 536 |
len_train_dataset // train_batch_size if len_train_dataset is not None else None
|
| 537 |
)
|
|
|
|
| 677 |
# add interesting config parameters
|
| 678 |
wandb.config.update(
|
| 679 |
{
|
| 680 |
+
"len_train_dataset": len_train_dataset,
|
| 681 |
+
"len_eval_dataset": len_eval_dataset,
|
| 682 |
"batch_size_per_update": batch_size_per_update,
|
| 683 |
}
|
| 684 |
)
|
|
|
|
| 690 |
# ======================== Evaluating ==============================
|
| 691 |
eval_metrics = []
|
| 692 |
if training_args.do_eval:
|
| 693 |
+
eval_loader = dataset.dataloader("eval", eval_batch_size)
|
|
|
|
|
|
|
|
|
|
| 694 |
eval_steps = (
|
| 695 |
len_eval_dataset // eval_batch_size
|
| 696 |
if len_eval_dataset is not None
|
|
|
|
| 805 |
wandb_log({"train/epoch": epoch}, step=unreplicate(state.step))
|
| 806 |
|
| 807 |
# Generate an epoch by shuffling sampling indices from the train dataset
|
| 808 |
+
train_loader = dataset.dataloader("train", train_batch_size)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 809 |
# train
|
| 810 |
for batch in tqdm(
|
| 811 |
train_loader,
|