Spaces:
Running
Running
remove .ipynb
Browse files
demo/.ipynb_checkpoints/tpu-demo-checkpoint.ipynb
DELETED
|
@@ -1,391 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"id": "6eb74941-bb4d-4d7e-97f1-d5a3a07672bf",
|
| 7 |
-
"metadata": {},
|
| 8 |
-
"outputs": [],
|
| 9 |
-
"source": [
|
| 10 |
-
"# !pip install flax transformers\n",
|
| 11 |
-
"# !git clone https://github.com/patil-suraj/vqgan-jax.git"
|
| 12 |
-
]
|
| 13 |
-
},
|
| 14 |
-
{
|
| 15 |
-
"cell_type": "code",
|
| 16 |
-
"execution_count": 305,
|
| 17 |
-
"id": "41db7534-f589-4b63-9165-9c9799e1b06e",
|
| 18 |
-
"metadata": {},
|
| 19 |
-
"outputs": [
|
| 20 |
-
{
|
| 21 |
-
"name": "stdout",
|
| 22 |
-
"output_type": "stream",
|
| 23 |
-
"text": [
|
| 24 |
-
"/home/surajpatil/vqgan-jax\n"
|
| 25 |
-
]
|
| 26 |
-
},
|
| 27 |
-
{
|
| 28 |
-
"data": {
|
| 29 |
-
"text/plain": [
|
| 30 |
-
"[TpuDevice(id=0, process_index=0, coords=(0,0,0), core_on_chip=0),\n",
|
| 31 |
-
" TpuDevice(id=1, process_index=0, coords=(0,0,0), core_on_chip=1),\n",
|
| 32 |
-
" TpuDevice(id=2, process_index=0, coords=(1,0,0), core_on_chip=0),\n",
|
| 33 |
-
" TpuDevice(id=3, process_index=0, coords=(1,0,0), core_on_chip=1),\n",
|
| 34 |
-
" TpuDevice(id=4, process_index=0, coords=(0,1,0), core_on_chip=0),\n",
|
| 35 |
-
" TpuDevice(id=5, process_index=0, coords=(0,1,0), core_on_chip=1),\n",
|
| 36 |
-
" TpuDevice(id=6, process_index=0, coords=(1,1,0), core_on_chip=0),\n",
|
| 37 |
-
" TpuDevice(id=7, process_index=0, coords=(1,1,0), core_on_chip=1)]"
|
| 38 |
-
]
|
| 39 |
-
},
|
| 40 |
-
"execution_count": 305,
|
| 41 |
-
"metadata": {},
|
| 42 |
-
"output_type": "execute_result"
|
| 43 |
-
}
|
| 44 |
-
],
|
| 45 |
-
"source": [
|
| 46 |
-
"%cd ~/vqgan-jax\n",
|
| 47 |
-
"\n",
|
| 48 |
-
"import random\n",
|
| 49 |
-
"\n",
|
| 50 |
-
"\n",
|
| 51 |
-
"import jax\n",
|
| 52 |
-
"import flax.linen as nn\n",
|
| 53 |
-
"from flax.training.common_utils import shard\n",
|
| 54 |
-
"from flax.jax_utils import replicate, unreplicate\n",
|
| 55 |
-
"\n",
|
| 56 |
-
"from transformers.models.bart.modeling_flax_bart import *\n",
|
| 57 |
-
"from transformers import BartTokenizer, FlaxBartForConditionalGeneration\n",
|
| 58 |
-
"\n",
|
| 59 |
-
"import io\n",
|
| 60 |
-
"\n",
|
| 61 |
-
"import requests\n",
|
| 62 |
-
"from PIL import Image\n",
|
| 63 |
-
"import numpy as np\n",
|
| 64 |
-
"import matplotlib.pyplot as plt\n",
|
| 65 |
-
"\n",
|
| 66 |
-
"import torch\n",
|
| 67 |
-
"import torchvision.transforms as T\n",
|
| 68 |
-
"import torchvision.transforms.functional as TF\n",
|
| 69 |
-
"from torchvision.transforms import InterpolationMode\n",
|
| 70 |
-
"\n",
|
| 71 |
-
"\n",
|
| 72 |
-
"from modeling_flax_vqgan import VQModel\n",
|
| 73 |
-
"\n",
|
| 74 |
-
"jax.devices()"
|
| 75 |
-
]
|
| 76 |
-
},
|
| 77 |
-
{
|
| 78 |
-
"cell_type": "code",
|
| 79 |
-
"execution_count": 2,
|
| 80 |
-
"id": "b6a3462a-9004-4121-b365-3ae3aaf94dd2",
|
| 81 |
-
"metadata": {},
|
| 82 |
-
"outputs": [],
|
| 83 |
-
"source": [
|
| 84 |
-
"# TODO: set those args in a config file\n",
|
| 85 |
-
"OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos\n",
|
| 86 |
-
"OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos\n",
|
| 87 |
-
"BOS_TOKEN_ID = 16384\n",
|
| 88 |
-
"BASE_MODEL = 'facebook/bart-large'"
|
| 89 |
-
]
|
| 90 |
-
},
|
| 91 |
-
{
|
| 92 |
-
"cell_type": "code",
|
| 93 |
-
"execution_count": 3,
|
| 94 |
-
"id": "bbef1afb-0b36-44a5-83f7-643d7e2c0e30",
|
| 95 |
-
"metadata": {},
|
| 96 |
-
"outputs": [],
|
| 97 |
-
"source": [
|
| 98 |
-
"class CustomFlaxBartModule(FlaxBartModule):\n",
|
| 99 |
-
" def setup(self):\n",
|
| 100 |
-
" # we keep shared to easily load pre-trained weights\n",
|
| 101 |
-
" self.shared = nn.Embed(\n",
|
| 102 |
-
" self.config.vocab_size,\n",
|
| 103 |
-
" self.config.d_model,\n",
|
| 104 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
| 105 |
-
" dtype=self.dtype,\n",
|
| 106 |
-
" )\n",
|
| 107 |
-
" # a separate embedding is used for the decoder\n",
|
| 108 |
-
" self.decoder_embed = nn.Embed(\n",
|
| 109 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
| 110 |
-
" self.config.d_model,\n",
|
| 111 |
-
" embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
| 112 |
-
" dtype=self.dtype,\n",
|
| 113 |
-
" )\n",
|
| 114 |
-
" self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)\n",
|
| 115 |
-
"\n",
|
| 116 |
-
" # the decoder has a different config\n",
|
| 117 |
-
" decoder_config = BartConfig(self.config.to_dict())\n",
|
| 118 |
-
" decoder_config.max_position_embeddings = OUTPUT_LENGTH\n",
|
| 119 |
-
" decoder_config.vocab_size = OUTPUT_VOCAB_SIZE\n",
|
| 120 |
-
" self.decoder = FlaxBartDecoder(decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed)\n",
|
| 121 |
-
"\n",
|
| 122 |
-
"class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):\n",
|
| 123 |
-
" def setup(self):\n",
|
| 124 |
-
" self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)\n",
|
| 125 |
-
" self.lm_head = nn.Dense(\n",
|
| 126 |
-
" OUTPUT_VOCAB_SIZE,\n",
|
| 127 |
-
" use_bias=False,\n",
|
| 128 |
-
" dtype=self.dtype,\n",
|
| 129 |
-
" kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),\n",
|
| 130 |
-
" )\n",
|
| 131 |
-
" self.final_logits_bias = self.param(\"final_logits_bias\", self.bias_init, (1, OUTPUT_VOCAB_SIZE))\n",
|
| 132 |
-
"\n",
|
| 133 |
-
"class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):\n",
|
| 134 |
-
" module_class = CustomFlaxBartForConditionalGenerationModule"
|
| 135 |
-
]
|
| 136 |
-
},
|
| 137 |
-
{
|
| 138 |
-
"cell_type": "code",
|
| 139 |
-
"execution_count": null,
|
| 140 |
-
"id": "879320b7-eaa0-4dc9-bbf2-c81efc53301d",
|
| 141 |
-
"metadata": {},
|
| 142 |
-
"outputs": [],
|
| 143 |
-
"source": [
|
| 144 |
-
"import wandb\n",
|
| 145 |
-
"run = wandb.init()\n",
|
| 146 |
-
"artifact = run.use_artifact('wandb/hf-flax-dalle-mini/model-3h3x3565:v7', type='bart_model')\n",
|
| 147 |
-
"artifact_dir = artifact.download()"
|
| 148 |
-
]
|
| 149 |
-
},
|
| 150 |
-
{
|
| 151 |
-
"cell_type": "code",
|
| 152 |
-
"execution_count": 164,
|
| 153 |
-
"id": "e8bcff33-e95b-4c01-b162-ee857a55c3e6",
|
| 154 |
-
"metadata": {},
|
| 155 |
-
"outputs": [
|
| 156 |
-
{
|
| 157 |
-
"name": "stderr",
|
| 158 |
-
"output_type": "stream",
|
| 159 |
-
"text": [
|
| 160 |
-
"/home/surajpatil/transformers/src/transformers/models/bart/configuration_bart.py:177: UserWarning: Please make sure the config includes `forced_bos_token_id=16384` in future versions.The config can simply be saved and uploaded again to be fixed.\n",
|
| 161 |
-
" warnings.warn(\n"
|
| 162 |
-
]
|
| 163 |
-
},
|
| 164 |
-
{
|
| 165 |
-
"data": {
|
| 166 |
-
"text/plain": [
|
| 167 |
-
"(1, 16385)"
|
| 168 |
-
]
|
| 169 |
-
},
|
| 170 |
-
"execution_count": 164,
|
| 171 |
-
"metadata": {},
|
| 172 |
-
"output_type": "execute_result"
|
| 173 |
-
}
|
| 174 |
-
],
|
| 175 |
-
"source": [
|
| 176 |
-
"# create our model and initialize it randomly\n",
|
| 177 |
-
"tokenizer = BartTokenizer.from_pretrained(BASE_MODEL)\n",
|
| 178 |
-
"model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)\n",
|
| 179 |
-
"model.config.force_bos_token_to_be_generated = False\n",
|
| 180 |
-
"model.config.forced_bos_token_id = None\n",
|
| 181 |
-
"model.config.forced_eos_token_id = None\n",
|
| 182 |
-
"\n",
|
| 183 |
-
"# we verify that the shape has not been modified\n",
|
| 184 |
-
"model.params['final_logits_bias'].shape"
|
| 185 |
-
]
|
| 186 |
-
},
|
| 187 |
-
{
|
| 188 |
-
"cell_type": "code",
|
| 189 |
-
"execution_count": 6,
|
| 190 |
-
"id": "8d5e0f14-2502-470e-9553-daee6748601f",
|
| 191 |
-
"metadata": {},
|
| 192 |
-
"outputs": [
|
| 193 |
-
{
|
| 194 |
-
"data": {
|
| 195 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 196 |
-
"model_id": "9b979a72ab9e449387a89bf9b3012af5",
|
| 197 |
-
"version_major": 2,
|
| 198 |
-
"version_minor": 0
|
| 199 |
-
},
|
| 200 |
-
"text/plain": [
|
| 201 |
-
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=433.0, style=ProgressStyle(description_…"
|
| 202 |
-
]
|
| 203 |
-
},
|
| 204 |
-
"metadata": {},
|
| 205 |
-
"output_type": "display_data"
|
| 206 |
-
},
|
| 207 |
-
{
|
| 208 |
-
"name": "stdout",
|
| 209 |
-
"output_type": "stream",
|
| 210 |
-
"text": [
|
| 211 |
-
"\n"
|
| 212 |
-
]
|
| 213 |
-
},
|
| 214 |
-
{
|
| 215 |
-
"data": {
|
| 216 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 217 |
-
"model_id": "01730e0e9d02428ca9dad680f9fdda42",
|
| 218 |
-
"version_major": 2,
|
| 219 |
-
"version_minor": 0
|
| 220 |
-
},
|
| 221 |
-
"text/plain": [
|
| 222 |
-
"HBox(children=(FloatProgress(value=0.0, description='Downloading', max=304307206.0, style=ProgressStyle(descri…"
|
| 223 |
-
]
|
| 224 |
-
},
|
| 225 |
-
"metadata": {},
|
| 226 |
-
"output_type": "display_data"
|
| 227 |
-
},
|
| 228 |
-
{
|
| 229 |
-
"name": "stdout",
|
| 230 |
-
"output_type": "stream",
|
| 231 |
-
"text": [
|
| 232 |
-
"\n",
|
| 233 |
-
"Working with z of shape (1, 256, 16, 16) = 65536 dimensions.\n"
|
| 234 |
-
]
|
| 235 |
-
}
|
| 236 |
-
],
|
| 237 |
-
"source": [
|
| 238 |
-
"vqgan = VQModel.from_pretrained(\"flax-community/vqgan_f16_16384\")"
|
| 239 |
-
]
|
| 240 |
-
},
|
| 241 |
-
{
|
| 242 |
-
"cell_type": "code",
|
| 243 |
-
"execution_count": 295,
|
| 244 |
-
"id": "6cca395a-93c2-49bc-a3be-98287e4403d4",
|
| 245 |
-
"metadata": {},
|
| 246 |
-
"outputs": [],
|
| 247 |
-
"source": [
|
| 248 |
-
"def custom_to_pil(x):\n",
|
| 249 |
-
" x = np.clip(x, 0., 1.)\n",
|
| 250 |
-
" x = (255*x).astype(np.uint8)\n",
|
| 251 |
-
" x = Image.fromarray(x)\n",
|
| 252 |
-
" if not x.mode == \"RGB\":\n",
|
| 253 |
-
" x = x.convert(\"RGB\")\n",
|
| 254 |
-
" return x\n",
|
| 255 |
-
"\n",
|
| 256 |
-
"def generate(input, rng, params):\n",
|
| 257 |
-
" return model.generate(\n",
|
| 258 |
-
" **input,\n",
|
| 259 |
-
" max_length=257,\n",
|
| 260 |
-
" num_beams=1,\n",
|
| 261 |
-
" do_sample=True,\n",
|
| 262 |
-
" prng_key=rng,\n",
|
| 263 |
-
" eos_token_id=50000,\n",
|
| 264 |
-
" pad_token_id=50000,\n",
|
| 265 |
-
" params=params\n",
|
| 266 |
-
" )\n",
|
| 267 |
-
"\n",
|
| 268 |
-
"def get_images(indices, params):\n",
|
| 269 |
-
" return vqgan.decode_code(indices, params=params)\n",
|
| 270 |
-
"\n",
|
| 271 |
-
"\n",
|
| 272 |
-
"def plot_images(images):\n",
|
| 273 |
-
" fig = plt.figure(figsize=(40, 20))\n",
|
| 274 |
-
" columns = 4\n",
|
| 275 |
-
" rows = 2\n",
|
| 276 |
-
" plt.subplots_adjust(hspace=0, wspace=0)\n",
|
| 277 |
-
"\n",
|
| 278 |
-
" for i in range(1, columns*rows +1):\n",
|
| 279 |
-
" fig.add_subplot(rows, columns, i)\n",
|
| 280 |
-
" plt.imshow(images[i-1])\n",
|
| 281 |
-
" plt.gca().axes.get_yaxis().set_visible(False)\n",
|
| 282 |
-
" plt.show()\n",
|
| 283 |
-
" \n",
|
| 284 |
-
"def stack_reconstructions(images):\n",
|
| 285 |
-
" w, h = images[0].size[0], images[0].size[1]\n",
|
| 286 |
-
" img = Image.new(\"RGB\", (len(images)*w, h))\n",
|
| 287 |
-
" for i, img_ in enumerate(images):\n",
|
| 288 |
-
" img.paste(img_, (i*w,0))\n",
|
| 289 |
-
" return img"
|
| 290 |
-
]
|
| 291 |
-
},
|
| 292 |
-
{
|
| 293 |
-
"cell_type": "code",
|
| 294 |
-
"execution_count": 166,
|
| 295 |
-
"id": "b1bec3d2-ef17-4feb-aa0d-b51ed2fdcd3e",
|
| 296 |
-
"metadata": {},
|
| 297 |
-
"outputs": [],
|
| 298 |
-
"source": [
|
| 299 |
-
"p_generate = jax.pmap(generate, \"batch\")\n",
|
| 300 |
-
"p_get_images = jax.pmap(get_images, \"batch\")"
|
| 301 |
-
]
|
| 302 |
-
},
|
| 303 |
-
{
|
| 304 |
-
"cell_type": "code",
|
| 305 |
-
"execution_count": null,
|
| 306 |
-
"id": "a539823a-a775-4d92-96a5-dc8b1eef69c5",
|
| 307 |
-
"metadata": {},
|
| 308 |
-
"outputs": [],
|
| 309 |
-
"source": [
|
| 310 |
-
"bart_params = replicate(model.params)\n",
|
| 311 |
-
"vqgan_params = replicate(vqgan.params)"
|
| 312 |
-
]
|
| 313 |
-
},
|
| 314 |
-
{
|
| 315 |
-
"cell_type": "code",
|
| 316 |
-
"execution_count": 328,
|
| 317 |
-
"id": "e8b268d8-6992-422a-8373-95651474ae70",
|
| 318 |
-
"metadata": {},
|
| 319 |
-
"outputs": [],
|
| 320 |
-
"source": [
|
| 321 |
-
"prompts = [\n",
|
| 322 |
-
" \"man in blue jacket walking on pathway in between trees during daytime\",\n",
|
| 323 |
-
" 'white snow covered mountain under blue sky during daytime',\n",
|
| 324 |
-
" 'white snow covered mountain under blue sky during night',\n",
|
| 325 |
-
" \"orange tabby cat on persons hand\",\n",
|
| 326 |
-
" \"aerial view of beach during daytime\",\n",
|
| 327 |
-
" \"chess pieces on chess board\",\n",
|
| 328 |
-
" \"laptop on brown wooden table\",\n",
|
| 329 |
-
" \"white bus on road near high rise buildings\",\n",
|
| 330 |
-
"]\n",
|
| 331 |
-
"\n",
|
| 332 |
-
"\n",
|
| 333 |
-
"prompt = [prompts[-1]] * 8\n",
|
| 334 |
-
"inputs = tokenizer(prompt, return_tensors='jax', padding=\"max_length\", truncation=True, max_length=128).data\n",
|
| 335 |
-
"inputs = shard(inputs)"
|
| 336 |
-
]
|
| 337 |
-
},
|
| 338 |
-
{
|
| 339 |
-
"cell_type": "code",
|
| 340 |
-
"execution_count": null,
|
| 341 |
-
"id": "68638cfa-9a4d-4e6a-8630-91aefb627bbd",
|
| 342 |
-
"metadata": {},
|
| 343 |
-
"outputs": [],
|
| 344 |
-
"source": [
|
| 345 |
-
"%%time\n",
|
| 346 |
-
"for i in range(8):\n",
|
| 347 |
-
" key = random.randint(0, 1e7)\n",
|
| 348 |
-
" rng = jax.random.PRNGKey(key)\n",
|
| 349 |
-
" rngs = jax.random.split(rng, jax.local_device_count())\n",
|
| 350 |
-
" indices = p_generate(inputs, rngs, bart_params).sequences\n",
|
| 351 |
-
" indices = indices[:, :, 1:]\n",
|
| 352 |
-
"\n",
|
| 353 |
-
" images = p_get_images(indices, vqgan_params)\n",
|
| 354 |
-
" images = np.squeeze(np.asarray(images), 1)\n",
|
| 355 |
-
" imges = [custom_to_pil(image) for image in images]\n",
|
| 356 |
-
"\n",
|
| 357 |
-
" plt.figure(figsize=(40, 20))\n",
|
| 358 |
-
" plt.imshow(stack_reconstructions(imges))"
|
| 359 |
-
]
|
| 360 |
-
},
|
| 361 |
-
{
|
| 362 |
-
"cell_type": "code",
|
| 363 |
-
"execution_count": null,
|
| 364 |
-
"id": "681af54e-da10-4b8e-80d0-ebcbdf23f376",
|
| 365 |
-
"metadata": {},
|
| 366 |
-
"outputs": [],
|
| 367 |
-
"source": []
|
| 368 |
-
}
|
| 369 |
-
],
|
| 370 |
-
"metadata": {
|
| 371 |
-
"kernelspec": {
|
| 372 |
-
"display_name": "Python 3",
|
| 373 |
-
"language": "python",
|
| 374 |
-
"name": "python3"
|
| 375 |
-
},
|
| 376 |
-
"language_info": {
|
| 377 |
-
"codemirror_mode": {
|
| 378 |
-
"name": "ipython",
|
| 379 |
-
"version": 3
|
| 380 |
-
},
|
| 381 |
-
"file_extension": ".py",
|
| 382 |
-
"mimetype": "text/x-python",
|
| 383 |
-
"name": "python",
|
| 384 |
-
"nbconvert_exporter": "python",
|
| 385 |
-
"pygments_lexer": "ipython3",
|
| 386 |
-
"version": "3.8.10"
|
| 387 |
-
}
|
| 388 |
-
},
|
| 389 |
-
"nbformat": 4,
|
| 390 |
-
"nbformat_minor": 5
|
| 391 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|