Spaces:
Running
Running
Commit
·
a8e4fc0
1
Parent(s):
8b9d1f5
CC3M downloader script updated
Browse files- data/CC3M_downloader.py +46 -140
data/CC3M_downloader.py
CHANGED
|
@@ -1,156 +1,62 @@
|
|
| 1 |
-
# It expects you to have the train and validation `.tsv` file downloaded in the current directory
|
| 2 |
-
# Head around to this link to download the `.tsv` files
|
| 3 |
-
# https://ai.google.com/research/ConceptualCaptions/download
|
| 4 |
-
|
| 5 |
'''
|
| 6 |
-
This script was adapted from https://
|
| 7 |
-
Few changes were made
|
| 8 |
-
|
| 9 |
-
as we do not own any of the images in the dataset and hence cannot legally provide them to you.
|
| 10 |
'''
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
import pandas as pd
|
| 12 |
-
import
|
|
|
|
| 13 |
import requests
|
| 14 |
-
import
|
| 15 |
-
import
|
| 16 |
-
import
|
| 17 |
-
import magic
|
| 18 |
from multiprocessing import Pool
|
| 19 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
}
|
| 25 |
-
|
| 26 |
-
def _df_split_apply(tup_arg):
|
| 27 |
-
split_ind, subset, func = tup_arg
|
| 28 |
-
r = subset.apply(func, axis=1)
|
| 29 |
-
return (split_ind, r)
|
| 30 |
|
| 31 |
-
|
| 32 |
-
print("
|
| 33 |
-
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
for k in results.keys():
|
| 40 |
-
pbar.update(len(results[str(k)][1]))
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
|
| 45 |
-
|
| 46 |
-
with Pool(processes) as pool:
|
| 47 |
-
for i, result in enumerate(pool.imap_unordered(_df_split_apply, pool_data, 2)):
|
| 48 |
-
results[str(result[0])] = result
|
| 49 |
-
pbar.update(len(result[1]))
|
| 50 |
-
pbar.close()
|
| 51 |
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
# Unique name based on url
|
| 56 |
-
def _file_name(row):
|
| 57 |
-
return "%s/%s_%s" % (row['folder'], row.name, (zlib.crc32(row['url'].encode('utf-8')) & 0xffffffff))
|
| 58 |
-
|
| 59 |
-
# For checking mimetypes separately without download
|
| 60 |
-
def check_mimetype(row):
|
| 61 |
-
if os.path.isfile(str(row['file'])):
|
| 62 |
-
row['mimetype'] = magic.from_file(row['file'], mime=True)
|
| 63 |
-
row['size'] = os.stat(row['file']).st_size
|
| 64 |
-
return row
|
| 65 |
-
|
| 66 |
-
# Don't download image, just check with a HEAD request, can't resume.
|
| 67 |
-
# Can use this instead of download_image to get HTTP status codes.
|
| 68 |
-
def check_download(row):
|
| 69 |
-
fname = _file_name(row)
|
| 70 |
try:
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
return row
|
| 82 |
-
|
| 83 |
-
def download_image(row):
|
| 84 |
-
fname = _file_name(row)
|
| 85 |
-
# Skip Already downloaded, retry others later
|
| 86 |
-
if os.path.isfile(fname):
|
| 87 |
-
row['status'] = 200
|
| 88 |
-
row['file'] = fname
|
| 89 |
-
row['mimetype'] = magic.from_file(row['file'], mime=True)
|
| 90 |
-
row['size'] = os.stat(row['file']).st_size
|
| 91 |
-
return row
|
| 92 |
-
|
| 93 |
-
try:
|
| 94 |
-
# use smaller timeout to skip errors, but can result in failed downloads
|
| 95 |
-
response = requests.get(row['url'], stream=False, timeout=10, allow_redirects=True, headers=headers)
|
| 96 |
-
row['status'] = response.status_code
|
| 97 |
-
#row['headers'] = dict(response.headers)
|
| 98 |
except Exception as e:
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
return row
|
| 102 |
-
|
| 103 |
-
if response.ok:
|
| 104 |
-
try:
|
| 105 |
-
with open(fname, 'wb') as out_file:
|
| 106 |
-
# some sites respond with gzip transport encoding
|
| 107 |
-
response.raw.decode_content = True
|
| 108 |
-
out_file.write(response.content)
|
| 109 |
-
row['mimetype'] = magic.from_file(fname, mime=True)
|
| 110 |
-
row['size'] = os.stat(fname).st_size
|
| 111 |
-
except:
|
| 112 |
-
# This is if it times out during a download or decode
|
| 113 |
-
row['status'] = 408
|
| 114 |
-
return row
|
| 115 |
-
row['file'] = fname
|
| 116 |
-
return row
|
| 117 |
-
|
| 118 |
-
def open_tsv(fname, folder):
|
| 119 |
-
print("Opening %s Data File..." % fname)
|
| 120 |
-
df = pd.read_csv(fname, sep='\t', names=["caption","url"], usecols=range(1,2))
|
| 121 |
-
df['folder'] = folder
|
| 122 |
-
print("Processing", len(df), " Images:")
|
| 123 |
-
return df
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
with shelve.open('%s_%s_%s_results.tmp' % (dataset_name, func.__name__, chunk_size)) as results:
|
| 128 |
-
keylist = sorted([int(k) for k in results.keys()])
|
| 129 |
-
df = pd.concat([results[str(k)][1] for k in keylist], sort=True)
|
| 130 |
-
return df
|
| 131 |
-
|
| 132 |
-
# number of processes in the pool can be larger than cores
|
| 133 |
-
num_processes = 256
|
| 134 |
-
# chunk_size is how many images per chunk per process - changing this resets progress when restarting.
|
| 135 |
-
images_per_part = 200
|
| 136 |
-
|
| 137 |
-
'''
|
| 138 |
-
A bunch of them will fail to download, and return web pages instead. These will
|
| 139 |
-
need to be cleaned up later. See downloaded_validation_report.tsv after it downloads
|
| 140 |
-
for HTTP errors. Around 10-11% of images are gone, based on validation set results. Setting
|
| 141 |
-
the user agent could fix some errors too maybe - not sure if any requests are rejected by
|
| 142 |
-
sites based on this.
|
| 143 |
-
'''
|
| 144 |
-
data_name = "validation"
|
| 145 |
-
df = open_tsv("Validation_GCC-1.1.0-Validation.tsv", data_name)
|
| 146 |
-
df_multiprocess(df=df, processes=num_processes, chunk_size=images_per_part, func=download_image, dataset_name=data_name)
|
| 147 |
-
df = df_from_shelve(chunk_size=images_per_part, func=download_image, dataset_name=data_name)
|
| 148 |
-
df.to_csv("downloaded_%s_report.tsv.gz" % data_name, compression='gzip', sep='\t', header=False, index=False)
|
| 149 |
-
print("Saved.")
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
df = df_from_shelve(chunk_size=images_per_part, func=download_image, dataset_name=data_name)
|
| 155 |
-
df.to_csv("downloaded_%s_report.tsv.gz" % data_name, compression='gzip', sep='\t', header=False, index=False)
|
| 156 |
-
print("Saved.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
'''
|
| 2 |
+
This script was adapted from Luke Melas-Kyriazi's code. (https://twitter.com/lukemelas)
|
| 3 |
+
Few changes were made for the particular dataset. You're required to have the `.tsv` file downloaded in your directory.
|
| 4 |
+
Find them here- [https://github.com/google-research-datasets/conceptual-captions]
|
|
|
|
| 5 |
'''
|
| 6 |
+
|
| 7 |
+
import sys
|
| 8 |
+
import os
|
| 9 |
+
from datetime import datetime
|
| 10 |
import pandas as pd
|
| 11 |
+
import contexttimer
|
| 12 |
+
from urllib.request import urlopen
|
| 13 |
import requests
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import torch
|
| 16 |
+
from torchvision.transforms import functional as TF
|
|
|
|
| 17 |
from multiprocessing import Pool
|
| 18 |
from tqdm import tqdm
|
| 19 |
+
import logging
|
| 20 |
+
import sys
|
| 21 |
|
| 22 |
+
# Setup
|
| 23 |
+
logging.basicConfig(filename='download.log', filemode='w', level=logging.INFO)
|
| 24 |
+
requests.packages.urllib3.disable_warnings(requests.packages.urllib3.exceptions.InsecureRequestWarning)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
if len(sys.argv) != 3:
|
| 27 |
+
print("Provide .tsv file name & output directory. e.g. python downloader.py Train-GCC-training.tsv training")
|
| 28 |
+
exit(1)
|
| 29 |
|
| 30 |
+
# Load data
|
| 31 |
+
print(f'Starting to load at {datetime.now().isoformat(timespec="minutes")}')
|
| 32 |
+
with contexttimer.Timer(prefix="Loading from tsv"):
|
| 33 |
+
df = pd.read_csv(sys.argv[1], delimiter='\t', header=None)
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
url_to_idx_map = {url: index for index, caption, url in df.itertuples()}
|
| 36 |
+
print(f'Loaded {len(url_to_idx_map)} urls')
|
| 37 |
|
| 38 |
+
base_dir = os.path.join(os.getcwd(), sys.argv[2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
def process(item):
|
| 41 |
+
url, image_id = item
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
try:
|
| 43 |
+
base_url = os.path.basename(url) # extract base url
|
| 44 |
+
stem, ext = os.path.splitext(base_url) # split into stem and extension
|
| 45 |
+
filename = f'{image_id:08d}---{stem}.jpg' # create filename
|
| 46 |
+
filepath = os.path.join(base_dir, filename) # concat to get filepath
|
| 47 |
+
if not os.path.isfile(filepath):
|
| 48 |
+
req = requests.get(url, stream=True, timeout=1, verify=False).raw
|
| 49 |
+
image = Image.open(req).convert('RGB')
|
| 50 |
+
if min(image.size) > 512:
|
| 51 |
+
image = TF.resize(image, size=512, interpolation=Image.LANCZOS)
|
| 52 |
+
image.save(filepath) # save PIL image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
except Exception as e:
|
| 54 |
+
logging.info(" ".join(repr(e).splitlines()))
|
| 55 |
+
logging.error(url)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
list_of_items = list(url_to_idx_map.items())
|
| 58 |
+
print(len(list_of_items))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
+
with Pool(128) as p:
|
| 61 |
+
r = list(tqdm(p.imap(process, list_of_items), total=len(list_of_items)))
|
| 62 |
+
print('DONE')
|
|
|
|
|
|
|
|
|