Spaces:
Running
Running
feat: update distributed_shampoo + fix None spec
Browse files- tools/train/distributed_shampoo.py +427 -61
tools/train/distributed_shampoo.py
CHANGED
|
@@ -1,7 +1,5 @@
|
|
| 1 |
-
"""File copied from https://github.com/google-research/google-research/edit/master/scalable_shampoo/optax/distributed_shampoo.py"""
|
| 2 |
-
|
| 3 |
# coding=utf-8
|
| 4 |
-
# Copyright
|
| 5 |
#
|
| 6 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
# you may not use this file except in compliance with the License.
|
|
@@ -147,6 +145,12 @@ class QuantizedValue:
|
|
| 147 |
return val
|
| 148 |
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
# Per parameter optimizer state used in data-parallel training.
|
| 151 |
class ParameterStats(NamedTuple):
|
| 152 |
"""State associated to each parameter of the model being trained."""
|
|
@@ -156,6 +160,7 @@ class ParameterStats(NamedTuple):
|
|
| 156 |
preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array)
|
| 157 |
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
| 158 |
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
|
|
|
| 159 |
|
| 160 |
|
| 161 |
# For training extremely large model; We keep a global state with a concatenated
|
|
@@ -166,6 +171,7 @@ class ParameterStats(NamedTuple):
|
|
| 166 |
class GlobalShardedParameterStats:
|
| 167 |
statistics: chex.Array # Statistics
|
| 168 |
preconditioners: chex.Array # Preconditioners
|
|
|
|
| 169 |
|
| 170 |
|
| 171 |
# These are per-parameter local states; All statistics here mirror the parameter
|
|
@@ -177,12 +183,34 @@ class LocalShardedParameterStats:
|
|
| 177 |
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
| 178 |
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
| 179 |
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
|
|
|
| 180 |
index_start: np.int32 = struct.field(
|
| 181 |
pytree_node=False
|
| 182 |
) # Index into global statistics array
|
| 183 |
sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics.
|
| 184 |
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
class ShardedShampooStats(NamedTuple):
|
| 187 |
"""Shampoo state in sharded mode."""
|
| 188 |
|
|
@@ -195,6 +223,12 @@ class ShampooState(NamedTuple):
|
|
| 195 |
stats: Any
|
| 196 |
|
| 197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
class GraftingType(enum.IntEnum):
|
| 199 |
SGD = 1
|
| 200 |
ADAGRAD = 2
|
|
@@ -292,6 +326,8 @@ def matrix_inverse_pth_root(
|
|
| 292 |
matrix^(-1/p)
|
| 293 |
"""
|
| 294 |
|
|
|
|
|
|
|
| 295 |
# We use float32 for the matrix inverse pth root.
|
| 296 |
# Switch to f64 if you have hardware that supports it.
|
| 297 |
matrix_size = matrix.shape[0]
|
|
@@ -615,6 +651,7 @@ def _convert_to_parameter_stats(global_stats, local_stat):
|
|
| 615 |
new_preconditioners,
|
| 616 |
local_stat.diagonal_momentum,
|
| 617 |
local_stat.momentum,
|
|
|
|
| 618 |
)
|
| 619 |
|
| 620 |
|
|
@@ -624,11 +661,40 @@ def _convert_from_parameter_stats(parameter_stats, local_stats):
|
|
| 624 |
parameter_stats.diagonal_statistics,
|
| 625 |
parameter_stats.diagonal_momentum,
|
| 626 |
parameter_stats.momentum,
|
|
|
|
| 627 |
local_stats.index_start,
|
| 628 |
local_stats.sizes,
|
| 629 |
)
|
| 630 |
|
| 631 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 632 |
def batch(x, num_devices):
|
| 633 |
"""Batch `x` so that so that leading axis is num_devices."""
|
| 634 |
n = len(x)
|
|
@@ -670,7 +736,8 @@ def distributed_shampoo(
|
|
| 670 |
batch_axis_name=None,
|
| 671 |
### Only set following 3 params in pjit/spmd mode.
|
| 672 |
### WARNING: Experimental
|
| 673 |
-
|
|
|
|
| 674 |
num_devices_for_pjit=None,
|
| 675 |
shard_optimizer_states=False,
|
| 676 |
###
|
|
@@ -730,7 +797,8 @@ def distributed_shampoo(
|
|
| 730 |
exponent_override: Override the exponent used in matrix inverse.
|
| 731 |
batch_axis_name: labeled axis over pmap for data-parallel training the
|
| 732 |
optimizer used for.
|
| 733 |
-
|
|
|
|
| 734 |
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
| 735 |
shard_optimizer_states: Shard optimizer states to save memory in model
|
| 736 |
parallel training.
|
|
@@ -830,6 +898,11 @@ def distributed_shampoo(
|
|
| 830 |
)
|
| 831 |
|
| 832 |
def sharded_init_fn(params):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 833 |
params_flat, treedef = jax.tree_flatten(params)
|
| 834 |
# Find max size to pad to.
|
| 835 |
max_size = 0
|
|
@@ -845,6 +918,7 @@ def distributed_shampoo(
|
|
| 845 |
padded_statistics = []
|
| 846 |
padded_preconditioners = []
|
| 847 |
local_stats_flat = []
|
|
|
|
| 848 |
for param in params_flat:
|
| 849 |
preconditioner = Preconditioner(
|
| 850 |
param, block_size, best_effort_shape_interpretation
|
|
@@ -862,6 +936,12 @@ def distributed_shampoo(
|
|
| 862 |
preconditioners = [jnp.eye(max_size) for s in shapes]
|
| 863 |
padded_statistics.extend(statistics)
|
| 864 |
padded_preconditioners.extend(preconditioners)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 865 |
|
| 866 |
diagonal_statistics = []
|
| 867 |
if graft_type != GraftingType.SGD:
|
|
@@ -871,6 +951,7 @@ def distributed_shampoo(
|
|
| 871 |
_quantize_diagonal_statistics(diagonal_statistics),
|
| 872 |
_quantize_momentum(jnp.zeros_like(param)),
|
| 873 |
_quantize_momentum(jnp.zeros_like(param)),
|
|
|
|
| 874 |
index_start,
|
| 875 |
sizes,
|
| 876 |
)
|
|
@@ -888,14 +969,238 @@ def distributed_shampoo(
|
|
| 888 |
padded_preconditioners.extend(
|
| 889 |
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
| 890 |
)
|
|
|
|
| 891 |
global_stats = GlobalShardedParameterStats(
|
| 892 |
-
jnp.stack(padded_statistics),
|
|
|
|
|
|
|
| 893 |
)
|
| 894 |
return ShampooState(
|
| 895 |
count=jnp.zeros([], jnp.int32),
|
| 896 |
stats=ShardedShampooStats(global_stats, local_stats),
|
| 897 |
)
|
| 898 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 899 |
def sharded_update_fn(grads, state, params):
|
| 900 |
"""Transform the input gradient and update all statistics in sharded mode.
|
| 901 |
|
|
@@ -923,20 +1228,6 @@ def distributed_shampoo(
|
|
| 923 |
params_flat,
|
| 924 |
)
|
| 925 |
|
| 926 |
-
exponents = []
|
| 927 |
-
for stat, param in zip(new_stats_flat, params_flat):
|
| 928 |
-
num_statistics = len(stat.statistics)
|
| 929 |
-
if num_statistics > 0:
|
| 930 |
-
preconditioner = Preconditioner(
|
| 931 |
-
param, block_size, best_effort_shape_interpretation
|
| 932 |
-
)
|
| 933 |
-
exponent = (
|
| 934 |
-
preconditioner.exponent_for_preconditioner()
|
| 935 |
-
if exponent_override == 0
|
| 936 |
-
else exponent_override
|
| 937 |
-
)
|
| 938 |
-
exponents.extend([exponent] * num_statistics)
|
| 939 |
-
|
| 940 |
outputs = jax.tree_multimap(
|
| 941 |
lambda g, s, p: _transform_grad(g, s, p, state.count),
|
| 942 |
grads_flat,
|
|
@@ -951,7 +1242,6 @@ def distributed_shampoo(
|
|
| 951 |
_convert_from_parameter_stats(new_stat, local_stat)
|
| 952 |
for new_stat, local_stat in zip(new_stats_flat, local_stats_flat)
|
| 953 |
]
|
| 954 |
-
new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat)
|
| 955 |
|
| 956 |
max_size = global_stats.statistics.shape[1]
|
| 957 |
new_padded_statistics = []
|
|
@@ -974,22 +1264,16 @@ def distributed_shampoo(
|
|
| 974 |
for _ in range(to_pad)
|
| 975 |
]
|
| 976 |
)
|
| 977 |
-
exponents.extend([1 for _ in range(to_pad)])
|
| 978 |
new_stacked_padded_statistics = jnp.stack(new_padded_statistics)
|
| 979 |
-
|
| 980 |
-
|
| 981 |
-
|
| 982 |
-
mi_pth_root = functools.partial(
|
| 983 |
-
matrix_inverse_pth_root,
|
| 984 |
-
ridge_epsilon=matrix_epsilon,
|
| 985 |
-
precision=precision,
|
| 986 |
-
)
|
| 987 |
-
preconditioners, errors = jax.vmap(mi_pth_root)(xs, ps)
|
| 988 |
-
return preconditioners, errors
|
| 989 |
|
| 990 |
def _internal_inverse_pth_root_all():
|
| 991 |
-
preconditioners, errors =
|
| 992 |
-
new_stacked_padded_statistics,
|
|
|
|
|
|
|
| 993 |
)
|
| 994 |
return preconditioners, errors
|
| 995 |
|
|
@@ -1000,13 +1284,18 @@ def distributed_shampoo(
|
|
| 1000 |
# shaped tensors. Note statistics will be ignored as we are passing in
|
| 1001 |
# a large init value for error.
|
| 1002 |
preconditioners_init = new_stacked_padded_statistics
|
| 1003 |
-
|
|
|
|
| 1004 |
init_state = [preconditioners_init, errors_init]
|
| 1005 |
perform_step = state.count % preconditioning_compute_steps == 0
|
| 1006 |
new_preconditioners, errors = efficient_cond(
|
| 1007 |
perform_step, _internal_inverse_pth_root_all, init_state
|
| 1008 |
)
|
| 1009 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1010 |
errors = errors.reshape((-1, 1, 1))
|
| 1011 |
predicate = jnp.logical_or(
|
| 1012 |
jnp.isnan(errors), errors >= inverse_failure_threshold
|
|
@@ -1017,7 +1306,9 @@ def distributed_shampoo(
|
|
| 1017 |
+ (1.0 - predicate) * new_preconditioners
|
| 1018 |
)
|
| 1019 |
new_global_stats = GlobalShardedParameterStats(
|
| 1020 |
-
new_stacked_padded_statistics,
|
|
|
|
|
|
|
| 1021 |
)
|
| 1022 |
new_shampoo_state = ShampooState(
|
| 1023 |
count=state.count + 1,
|
|
@@ -1048,6 +1339,7 @@ def distributed_shampoo(
|
|
| 1048 |
_maybe_quantize_preconditioners(preconditioners),
|
| 1049 |
_quantize_momentum(jnp.zeros_like(param)),
|
| 1050 |
_quantize_momentum(jnp.zeros_like(param)),
|
|
|
|
| 1051 |
)
|
| 1052 |
|
| 1053 |
return ShampooState(
|
|
@@ -1092,6 +1384,7 @@ def distributed_shampoo(
|
|
| 1092 |
state.preconditioners,
|
| 1093 |
state.diagonal_momentum,
|
| 1094 |
state.momentum,
|
|
|
|
| 1095 |
)
|
| 1096 |
|
| 1097 |
def _matrix_inverse_pth_root_vmap(xs, ps):
|
|
@@ -1115,33 +1408,27 @@ def distributed_shampoo(
|
|
| 1115 |
|
| 1116 |
return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps)
|
| 1117 |
|
| 1118 |
-
def _matrix_inverse_pth_root_pjit(xs, ps):
|
| 1119 |
-
mesh_axis_names_tuple = tuple(mesh_axis_names)
|
| 1120 |
# Partition the concatenated statistics matrix across all cores.
|
| 1121 |
-
|
| 1122 |
-
|
| 1123 |
-
|
| 1124 |
-
|
| 1125 |
-
|
| 1126 |
-
),
|
| 1127 |
-
)(xs, ps)
|
| 1128 |
# Run matrix inverse pth root on each shard.
|
| 1129 |
partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap(
|
| 1130 |
partitioned_xs, partitioned_ps
|
| 1131 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1132 |
# Recombine the outputs at each core.
|
| 1133 |
-
preconditioners
|
| 1134 |
-
|
| 1135 |
-
|
| 1136 |
-
|
| 1137 |
-
mesh_axis_names_tuple,
|
| 1138 |
-
),
|
| 1139 |
-
pjit.PartitionSpec(
|
| 1140 |
-
mesh_axis_names_tuple,
|
| 1141 |
-
),
|
| 1142 |
-
),
|
| 1143 |
-
out_axis_resources=(None, None),
|
| 1144 |
-
)(partitioned_preconditioners, partitioned_errors)
|
| 1145 |
return preconditioners, errors
|
| 1146 |
|
| 1147 |
def _pmap_compute_preconditioners(
|
|
@@ -1223,31 +1510,54 @@ def distributed_shampoo(
|
|
| 1223 |
)
|
| 1224 |
|
| 1225 |
new_preconditioners_flat = []
|
|
|
|
| 1226 |
for p, shape, prev_p, error in zip(
|
| 1227 |
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
| 1228 |
):
|
| 1229 |
new_preconditioners_flat.append(
|
| 1230 |
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
| 1231 |
)
|
|
|
|
| 1232 |
|
| 1233 |
assert len(states) == len(num_statistics_per_state)
|
| 1234 |
assert len(new_preconditioners_flat) == num_statistics
|
|
|
|
| 1235 |
|
| 1236 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1237 |
preconditioners_for_states = []
|
| 1238 |
idx = 0
|
|
|
|
| 1239 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1240 |
if num_statistics == 0:
|
| 1241 |
preconditioners_for_states.append([])
|
|
|
|
| 1242 |
else:
|
| 1243 |
preconditioners_for_state = new_preconditioners_flat[
|
| 1244 |
idx : idx + num_statistics
|
| 1245 |
]
|
| 1246 |
assert len(state.statistics) == len(preconditioners_for_state)
|
| 1247 |
preconditioners_for_states.append(preconditioners_for_state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1248 |
idx += num_statistics
|
| 1249 |
new_states = []
|
| 1250 |
-
for state, new_preconditioners in zip(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1251 |
new_states.append(
|
| 1252 |
ParameterStats(
|
| 1253 |
state.diagonal_statistics,
|
|
@@ -1255,6 +1565,7 @@ def distributed_shampoo(
|
|
| 1255 |
new_preconditioners,
|
| 1256 |
state.diagonal_momentum,
|
| 1257 |
state.momentum,
|
|
|
|
| 1258 |
)
|
| 1259 |
)
|
| 1260 |
|
|
@@ -1413,6 +1724,7 @@ def distributed_shampoo(
|
|
| 1413 |
new_quantized_preconditioners_flat = []
|
| 1414 |
new_quantized_diagonals_flat = []
|
| 1415 |
new_quantized_bucket_sizes_flat = []
|
|
|
|
| 1416 |
for p, d, b, shape, prev_p, error in zip(
|
| 1417 |
quantized_preconditioners_flat,
|
| 1418 |
quantized_diagonals_flat,
|
|
@@ -1432,6 +1744,7 @@ def distributed_shampoo(
|
|
| 1432 |
new_quantized_bucket_sizes_flat.append(
|
| 1433 |
_select_preconditioner(error, b[: shape[0]], prev_p.bucket_size)
|
| 1434 |
)
|
|
|
|
| 1435 |
|
| 1436 |
assert len(states) == len(num_statistics_per_state)
|
| 1437 |
assert len(new_quantized_preconditioners_flat) == num_statistics
|
|
@@ -1440,10 +1753,12 @@ def distributed_shampoo(
|
|
| 1440 |
|
| 1441 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1442 |
preconditioners_for_states = []
|
|
|
|
| 1443 |
idx = 0
|
| 1444 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1445 |
if num_statistics == 0:
|
| 1446 |
preconditioners_for_states.append([])
|
|
|
|
| 1447 |
else:
|
| 1448 |
quantized_preconditioners_for_state = (
|
| 1449 |
new_quantized_preconditioners_flat[idx : idx + num_statistics]
|
|
@@ -1454,10 +1769,14 @@ def distributed_shampoo(
|
|
| 1454 |
quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[
|
| 1455 |
idx : idx + num_statistics
|
| 1456 |
]
|
|
|
|
|
|
|
|
|
|
| 1457 |
|
| 1458 |
assert len(state.statistics) == len(quantized_preconditioners_for_state)
|
| 1459 |
assert len(state.statistics) == len(quantized_diagonals_for_state)
|
| 1460 |
assert len(state.statistics) == len(quantized_bucket_sizes_for_state)
|
|
|
|
| 1461 |
|
| 1462 |
quantized_preconditioners = []
|
| 1463 |
for qv, qd, qb in zip(
|
|
@@ -1469,9 +1788,21 @@ def distributed_shampoo(
|
|
| 1469 |
QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape))
|
| 1470 |
)
|
| 1471 |
preconditioners_for_states.append(quantized_preconditioners)
|
|
|
|
| 1472 |
idx += num_statistics
|
| 1473 |
new_states = []
|
| 1474 |
-
for state, new_preconditioners in zip(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1475 |
new_states.append(
|
| 1476 |
ParameterStats(
|
| 1477 |
state.diagonal_statistics,
|
|
@@ -1479,6 +1810,7 @@ def distributed_shampoo(
|
|
| 1479 |
new_preconditioners,
|
| 1480 |
state.diagonal_momentum,
|
| 1481 |
state.momentum,
|
|
|
|
| 1482 |
)
|
| 1483 |
)
|
| 1484 |
|
|
@@ -1560,31 +1892,53 @@ def distributed_shampoo(
|
|
| 1560 |
)
|
| 1561 |
|
| 1562 |
new_preconditioners_flat = []
|
|
|
|
| 1563 |
for p, shape, prev_p, error in zip(
|
| 1564 |
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
| 1565 |
):
|
| 1566 |
new_preconditioners_flat.append(
|
| 1567 |
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
| 1568 |
)
|
|
|
|
| 1569 |
|
| 1570 |
assert len(states) == len(num_statistics_per_state)
|
| 1571 |
assert len(new_preconditioners_flat) == num_statistics
|
| 1572 |
|
| 1573 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1574 |
preconditioners_for_states = []
|
|
|
|
| 1575 |
idx = 0
|
| 1576 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1577 |
if num_statistics == 0:
|
| 1578 |
preconditioners_for_states.append([])
|
|
|
|
| 1579 |
else:
|
| 1580 |
preconditioners_for_state = new_preconditioners_flat[
|
| 1581 |
idx : idx + num_statistics
|
| 1582 |
]
|
| 1583 |
assert len(state.statistics) == len(preconditioners_for_state)
|
| 1584 |
preconditioners_for_states.append(preconditioners_for_state)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1585 |
idx += num_statistics
|
|
|
|
| 1586 |
new_states = []
|
| 1587 |
-
for state, new_preconditioners in zip(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1588 |
new_states.append(
|
| 1589 |
ParameterStats(
|
| 1590 |
state.diagonal_statistics,
|
|
@@ -1592,6 +1946,7 @@ def distributed_shampoo(
|
|
| 1592 |
new_preconditioners,
|
| 1593 |
state.diagonal_momentum,
|
| 1594 |
state.momentum,
|
|
|
|
| 1595 |
)
|
| 1596 |
)
|
| 1597 |
|
|
@@ -1778,7 +2133,9 @@ def distributed_shampoo(
|
|
| 1778 |
state.preconditioners,
|
| 1779 |
_quantize_momentum(grafting_update_with_wd_momentum),
|
| 1780 |
_quantize_momentum(shampoo_update_with_wd_momentum),
|
|
|
|
| 1781 |
)
|
|
|
|
| 1782 |
return transformed_update, param_stats
|
| 1783 |
|
| 1784 |
def update_fn(grads, state, params):
|
|
@@ -1821,6 +2178,15 @@ def distributed_shampoo(
|
|
| 1821 |
return updates, new_state
|
| 1822 |
|
| 1823 |
if shard_optimizer_states:
|
| 1824 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1825 |
else:
|
| 1826 |
return optax.GradientTransformation(init_fn, update_fn)
|
|
|
|
|
|
|
|
|
|
| 1 |
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The Google Research Authors.
|
| 3 |
#
|
| 4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
# you may not use this file except in compliance with the License.
|
|
|
|
| 145 |
return val
|
| 146 |
|
| 147 |
|
| 148 |
+
@struct.dataclass
|
| 149 |
+
class TrainingMetrics:
|
| 150 |
+
inverse_pth_root_errors: chex.Array # Error for inverse-pth roots.
|
| 151 |
+
# TODO(rohananil): Add more important metrics to track during training.
|
| 152 |
+
|
| 153 |
+
|
| 154 |
# Per parameter optimizer state used in data-parallel training.
|
| 155 |
class ParameterStats(NamedTuple):
|
| 156 |
"""State associated to each parameter of the model being trained."""
|
|
|
|
| 160 |
preconditioners: List[Any] # Preconditioners (QuantizedValue, chex.Array)
|
| 161 |
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
| 162 |
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
| 163 |
+
training_metrics: TrainingMetrics # Metrics (optional for training).
|
| 164 |
|
| 165 |
|
| 166 |
# For training extremely large model; We keep a global state with a concatenated
|
|
|
|
| 171 |
class GlobalShardedParameterStats:
|
| 172 |
statistics: chex.Array # Statistics
|
| 173 |
preconditioners: chex.Array # Preconditioners
|
| 174 |
+
exponents: chex.Array # exponents
|
| 175 |
|
| 176 |
|
| 177 |
# These are per-parameter local states; All statistics here mirror the parameter
|
|
|
|
| 183 |
diagonal_statistics: QuantizedValue # Accumulator for diagonal preconditioner
|
| 184 |
diagonal_momentum: QuantizedValue # Momentum for the diagonal preconditioner
|
| 185 |
momentum: QuantizedValue # Momentum for the shampoo preconditioner
|
| 186 |
+
training_metrics: TrainingMetrics # Metrics (optional for training).
|
| 187 |
index_start: np.int32 = struct.field(
|
| 188 |
pytree_node=False
|
| 189 |
) # Index into global statistics array
|
| 190 |
sizes: Any = struct.field(pytree_node=False) # Sizes of the statistics.
|
| 191 |
|
| 192 |
|
| 193 |
+
def init_training_metrics(num_statistics):
|
| 194 |
+
if num_statistics:
|
| 195 |
+
return TrainingMetrics(jnp.zeros([num_statistics], jnp.float32))
|
| 196 |
+
else:
|
| 197 |
+
return TrainingMetrics([])
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def init_training_metrics_shapes(num_statistics):
|
| 201 |
+
if num_statistics:
|
| 202 |
+
return TrainingMetrics([[num_statistics], jnp.float32])
|
| 203 |
+
else:
|
| 204 |
+
return TrainingMetrics([None, jnp.float32])
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
def init_training_metrics_pspec(num_statistics):
|
| 208 |
+
if num_statistics:
|
| 209 |
+
return TrainingMetrics(pjit.PartitionSpec())
|
| 210 |
+
else:
|
| 211 |
+
return TrainingMetrics(None)
|
| 212 |
+
|
| 213 |
+
|
| 214 |
class ShardedShampooStats(NamedTuple):
|
| 215 |
"""Shampoo state in sharded mode."""
|
| 216 |
|
|
|
|
| 223 |
stats: Any
|
| 224 |
|
| 225 |
|
| 226 |
+
class InitFnState(NamedTuple):
|
| 227 |
+
init_fn: Any
|
| 228 |
+
pspec_fn: Any
|
| 229 |
+
shape_and_dtype_fn: Any
|
| 230 |
+
|
| 231 |
+
|
| 232 |
class GraftingType(enum.IntEnum):
|
| 233 |
SGD = 1
|
| 234 |
ADAGRAD = 2
|
|
|
|
| 326 |
matrix^(-1/p)
|
| 327 |
"""
|
| 328 |
|
| 329 |
+
assert matrix.shape[0] == matrix.shape[1]
|
| 330 |
+
|
| 331 |
# We use float32 for the matrix inverse pth root.
|
| 332 |
# Switch to f64 if you have hardware that supports it.
|
| 333 |
matrix_size = matrix.shape[0]
|
|
|
|
| 651 |
new_preconditioners,
|
| 652 |
local_stat.diagonal_momentum,
|
| 653 |
local_stat.momentum,
|
| 654 |
+
local_stat.training_metrics,
|
| 655 |
)
|
| 656 |
|
| 657 |
|
|
|
|
| 661 |
parameter_stats.diagonal_statistics,
|
| 662 |
parameter_stats.diagonal_momentum,
|
| 663 |
parameter_stats.momentum,
|
| 664 |
+
parameter_stats.training_metrics,
|
| 665 |
local_stats.index_start,
|
| 666 |
local_stats.sizes,
|
| 667 |
)
|
| 668 |
|
| 669 |
|
| 670 |
+
def _add_error_into_local_stats(local_stats, errors, inverse_failure_threshold):
|
| 671 |
+
"""Adds errors back into local statistics."""
|
| 672 |
+
new_local_stats = []
|
| 673 |
+
for local_stat in local_stats:
|
| 674 |
+
index_start = int(local_stat.index_start)
|
| 675 |
+
index_end = int(len(local_stat.sizes)) + index_start
|
| 676 |
+
per_stat_error = errors[index_start:index_end]
|
| 677 |
+
if local_stat.sizes:
|
| 678 |
+
per_stat_error = jnp.where(
|
| 679 |
+
jnp.logical_and(
|
| 680 |
+
per_stat_error > 0.0, per_stat_error != inverse_failure_threshold
|
| 681 |
+
),
|
| 682 |
+
per_stat_error,
|
| 683 |
+
local_stat.training_metrics.inverse_pth_root_errors,
|
| 684 |
+
)
|
| 685 |
+
new_local_stats.append(
|
| 686 |
+
LocalShardedParameterStats(
|
| 687 |
+
local_stat.diagonal_statistics,
|
| 688 |
+
local_stat.diagonal_momentum,
|
| 689 |
+
local_stat.momentum,
|
| 690 |
+
TrainingMetrics(per_stat_error),
|
| 691 |
+
local_stat.index_start,
|
| 692 |
+
local_stat.sizes,
|
| 693 |
+
)
|
| 694 |
+
)
|
| 695 |
+
return new_local_stats
|
| 696 |
+
|
| 697 |
+
|
| 698 |
def batch(x, num_devices):
|
| 699 |
"""Batch `x` so that so that leading axis is num_devices."""
|
| 700 |
n = len(x)
|
|
|
|
| 736 |
batch_axis_name=None,
|
| 737 |
### Only set following 3 params in pjit/spmd mode.
|
| 738 |
### WARNING: Experimental
|
| 739 |
+
statistics_partition_spec=None,
|
| 740 |
+
preconditioner_partition_spec=None,
|
| 741 |
num_devices_for_pjit=None,
|
| 742 |
shard_optimizer_states=False,
|
| 743 |
###
|
|
|
|
| 797 |
exponent_override: Override the exponent used in matrix inverse.
|
| 798 |
batch_axis_name: labeled axis over pmap for data-parallel training the
|
| 799 |
optimizer used for.
|
| 800 |
+
statistics_partition_spec: PartitionSpec to be used in sharded mode.
|
| 801 |
+
preconditioner_partition_spec: PartitionSpec to be used in sharded mode.
|
| 802 |
num_devices_for_pjit: Number of devices to parallelize over when using pjit.
|
| 803 |
shard_optimizer_states: Shard optimizer states to save memory in model
|
| 804 |
parallel training.
|
|
|
|
| 898 |
)
|
| 899 |
|
| 900 |
def sharded_init_fn(params):
|
| 901 |
+
"""Returns optimizer state (for PJIT mode).
|
| 902 |
+
|
| 903 |
+
Args:
|
| 904 |
+
params: the parameters that should be updated.
|
| 905 |
+
"""
|
| 906 |
params_flat, treedef = jax.tree_flatten(params)
|
| 907 |
# Find max size to pad to.
|
| 908 |
max_size = 0
|
|
|
|
| 918 |
padded_statistics = []
|
| 919 |
padded_preconditioners = []
|
| 920 |
local_stats_flat = []
|
| 921 |
+
exponents = []
|
| 922 |
for param in params_flat:
|
| 923 |
preconditioner = Preconditioner(
|
| 924 |
param, block_size, best_effort_shape_interpretation
|
|
|
|
| 936 |
preconditioners = [jnp.eye(max_size) for s in shapes]
|
| 937 |
padded_statistics.extend(statistics)
|
| 938 |
padded_preconditioners.extend(preconditioners)
|
| 939 |
+
exponent = (
|
| 940 |
+
preconditioner.exponent_for_preconditioner()
|
| 941 |
+
if exponent_override == 0
|
| 942 |
+
else exponent_override
|
| 943 |
+
)
|
| 944 |
+
exponents.extend([exponent] * len(shapes))
|
| 945 |
|
| 946 |
diagonal_statistics = []
|
| 947 |
if graft_type != GraftingType.SGD:
|
|
|
|
| 951 |
_quantize_diagonal_statistics(diagonal_statistics),
|
| 952 |
_quantize_momentum(jnp.zeros_like(param)),
|
| 953 |
_quantize_momentum(jnp.zeros_like(param)),
|
| 954 |
+
init_training_metrics(len(sizes)),
|
| 955 |
index_start,
|
| 956 |
sizes,
|
| 957 |
)
|
|
|
|
| 969 |
padded_preconditioners.extend(
|
| 970 |
[jnp.eye(max_size, dtype=padded_statistics[0].dtype) for _ in range(to_pad)]
|
| 971 |
)
|
| 972 |
+
exponents.extend([1 for _ in range(to_pad)])
|
| 973 |
global_stats = GlobalShardedParameterStats(
|
| 974 |
+
jnp.stack(padded_statistics),
|
| 975 |
+
jnp.stack(padded_preconditioners),
|
| 976 |
+
jnp.stack(exponents),
|
| 977 |
)
|
| 978 |
return ShampooState(
|
| 979 |
count=jnp.zeros([], jnp.int32),
|
| 980 |
stats=ShardedShampooStats(global_stats, local_stats),
|
| 981 |
)
|
| 982 |
|
| 983 |
+
def _max_statistics_size_from_params(params):
|
| 984 |
+
max_size = 0
|
| 985 |
+
for param in params:
|
| 986 |
+
param_clone = jnp.zeros(param.shape, dtype=param.dtype)
|
| 987 |
+
preconditioner = Preconditioner(
|
| 988 |
+
param_clone, block_size, best_effort_shape_interpretation
|
| 989 |
+
)
|
| 990 |
+
if not _skip_preconditioning(param):
|
| 991 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 992 |
+
sizes = [s[0] for s in shapes]
|
| 993 |
+
max_size = max(max(sizes), max_size)
|
| 994 |
+
return max_size
|
| 995 |
+
|
| 996 |
+
def _remove_leading_sharding_annotation(pspec):
|
| 997 |
+
"""Mapping from N-d to (N-1)-d, used for quantization, factoring etc."""
|
| 998 |
+
# None and PSpec(None) are valid PSpecs.
|
| 999 |
+
if pspec and len(pspec) > 1:
|
| 1000 |
+
return pjit.PartitionSpec(*pspec[1:])
|
| 1001 |
+
else:
|
| 1002 |
+
return None
|
| 1003 |
+
|
| 1004 |
+
def sharded_init_partition_spec_fn(
|
| 1005 |
+
params, params_partition_spec, partition_spec_for_statistics
|
| 1006 |
+
):
|
| 1007 |
+
"""Returns a parallel state tree with PartitionSpec associated with state.
|
| 1008 |
+
|
| 1009 |
+
|
| 1010 |
+
Args:
|
| 1011 |
+
params: A pytree with params.
|
| 1012 |
+
params_partition_spec: A pytree with PartitionSpec for params.
|
| 1013 |
+
partition_spec_for_statistics: PartitionSpec for the statistics.
|
| 1014 |
+
"""
|
| 1015 |
+
# Parallel lists of spec, and params.
|
| 1016 |
+
param_pspec_flat, _ = jax.tree_flatten(
|
| 1017 |
+
params_partition_spec, is_leaf=lambda x: x is None
|
| 1018 |
+
)
|
| 1019 |
+
params_flat, treedef = jax.tree_flatten(params)
|
| 1020 |
+
assert param_pspec_flat
|
| 1021 |
+
assert params_flat
|
| 1022 |
+
# Step is replicated across cores.
|
| 1023 |
+
# None means cores.
|
| 1024 |
+
local_stats_flat = []
|
| 1025 |
+
num_statistics = 0
|
| 1026 |
+
for param, param_pspec in zip(params_flat, param_pspec_flat):
|
| 1027 |
+
param_clone = jnp.zeros(param.shape, dtype=param.dtype)
|
| 1028 |
+
preconditioner = Preconditioner(
|
| 1029 |
+
param_clone, block_size, best_effort_shape_interpretation
|
| 1030 |
+
)
|
| 1031 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 1032 |
+
sizes = []
|
| 1033 |
+
|
| 1034 |
+
index_start = num_statistics
|
| 1035 |
+
if not _skip_preconditioning(param):
|
| 1036 |
+
sizes = [s[0] for s in shapes]
|
| 1037 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 1038 |
+
num_statistics += len(shapes)
|
| 1039 |
+
|
| 1040 |
+
diagonal_statistics_pspec = []
|
| 1041 |
+
diagonal_statistics_scale_pspec = []
|
| 1042 |
+
if graft_type != GraftingType.SGD:
|
| 1043 |
+
# Identically shaped param.
|
| 1044 |
+
diagonal_statistics_pspec = param_pspec
|
| 1045 |
+
if quantized_dtype_for_diagonal_statistics_buffers() != jnp.float32:
|
| 1046 |
+
diagonal_statistics_scale_pspec = (
|
| 1047 |
+
_remove_leading_sharding_annotation(param_pspec)
|
| 1048 |
+
)
|
| 1049 |
+
|
| 1050 |
+
m1_pspec = param_pspec
|
| 1051 |
+
m2_pspec = param_pspec
|
| 1052 |
+
|
| 1053 |
+
m1_scale_pspec = []
|
| 1054 |
+
m2_scale_pspec = []
|
| 1055 |
+
|
| 1056 |
+
if quantized_dtype_for_momentum_buffers() != jnp.float32:
|
| 1057 |
+
m1_scale_pspec = _remove_leading_sharding_annotation(m1_pspec)
|
| 1058 |
+
m2_scale_pspec = _remove_leading_sharding_annotation(m2_pspec)
|
| 1059 |
+
|
| 1060 |
+
local_stats_flat.append(
|
| 1061 |
+
LocalShardedParameterStats(
|
| 1062 |
+
QuantizedValue(
|
| 1063 |
+
diagonal_statistics_pspec,
|
| 1064 |
+
[],
|
| 1065 |
+
diagonal_statistics_scale_pspec,
|
| 1066 |
+
quantized_dtype_for_diagonal_statistics_buffers(),
|
| 1067 |
+
False,
|
| 1068 |
+
list(param.shape),
|
| 1069 |
+
),
|
| 1070 |
+
QuantizedValue(
|
| 1071 |
+
m1_pspec,
|
| 1072 |
+
[],
|
| 1073 |
+
m1_scale_pspec,
|
| 1074 |
+
quantized_dtype_for_momentum_buffers(),
|
| 1075 |
+
False,
|
| 1076 |
+
list(param.shape),
|
| 1077 |
+
),
|
| 1078 |
+
QuantizedValue(
|
| 1079 |
+
m2_pspec,
|
| 1080 |
+
[],
|
| 1081 |
+
m2_scale_pspec,
|
| 1082 |
+
quantized_dtype_for_momentum_buffers(),
|
| 1083 |
+
False,
|
| 1084 |
+
list(param.shape),
|
| 1085 |
+
),
|
| 1086 |
+
init_training_metrics_pspec(len(sizes)),
|
| 1087 |
+
index_start,
|
| 1088 |
+
sizes,
|
| 1089 |
+
)
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
local_stats = jax.tree_unflatten(treedef, local_stats_flat)
|
| 1093 |
+
global_stats = GlobalShardedParameterStats(
|
| 1094 |
+
partition_spec_for_statistics,
|
| 1095 |
+
partition_spec_for_statistics,
|
| 1096 |
+
pjit.PartitionSpec(),
|
| 1097 |
+
)
|
| 1098 |
+
count_pspec = pjit.PartitionSpec()
|
| 1099 |
+
return ShampooState(
|
| 1100 |
+
count=count_pspec, stats=ShardedShampooStats(global_stats, local_stats)
|
| 1101 |
+
)
|
| 1102 |
+
|
| 1103 |
+
def sharded_init_shape_and_dtype_fn(params):
|
| 1104 |
+
"""Returns a parallel state tree with shape, dtype associated with state.
|
| 1105 |
+
|
| 1106 |
+
|
| 1107 |
+
Args:
|
| 1108 |
+
params: A pytree with params.
|
| 1109 |
+
"""
|
| 1110 |
+
# Parallel lists of spec, and params.
|
| 1111 |
+
params_flat, treedef = jax.tree_flatten(params)
|
| 1112 |
+
assert params_flat
|
| 1113 |
+
# Step is replicated across cores.
|
| 1114 |
+
# None means cores.
|
| 1115 |
+
local_stats_flat = []
|
| 1116 |
+
num_statistics = 0
|
| 1117 |
+
for param in params_flat:
|
| 1118 |
+
param_clone = jnp.zeros(param.shape, dtype=param.dtype)
|
| 1119 |
+
preconditioner = Preconditioner(
|
| 1120 |
+
param_clone, block_size, best_effort_shape_interpretation
|
| 1121 |
+
)
|
| 1122 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 1123 |
+
sizes = []
|
| 1124 |
+
|
| 1125 |
+
index_start = num_statistics
|
| 1126 |
+
if not _skip_preconditioning(param):
|
| 1127 |
+
sizes = [s[0] for s in shapes]
|
| 1128 |
+
shapes = preconditioner.shapes_for_preconditioners()
|
| 1129 |
+
num_statistics += len(shapes)
|
| 1130 |
+
|
| 1131 |
+
diagonal_statistics_shape_and_dtype = []
|
| 1132 |
+
diagonal_statistics_scale_shape_and_dtype = []
|
| 1133 |
+
if graft_type != GraftingType.SGD:
|
| 1134 |
+
diagonal_statistics_shape_and_dtype = [list(param.shape), param.dtype]
|
| 1135 |
+
qdtype = quantized_dtype_for_diagonal_statistics_buffers()
|
| 1136 |
+
if qdtype != jnp.float32:
|
| 1137 |
+
diagonal_statistics_shape_and_dtype = [list(param.shape), qdtype]
|
| 1138 |
+
diagonal_statistics_scale_shape_and_dtype = [
|
| 1139 |
+
list(param.shape)[1:],
|
| 1140 |
+
param.dtype,
|
| 1141 |
+
]
|
| 1142 |
+
|
| 1143 |
+
m1_shape_and_dtype = [list(param.shape), param.dtype]
|
| 1144 |
+
m2_shape_and_dtype = [list(param.shape), param.dtype]
|
| 1145 |
+
|
| 1146 |
+
m1_scale_shape_and_dtype = []
|
| 1147 |
+
m2_scale_shape_and_dtype = []
|
| 1148 |
+
|
| 1149 |
+
qdtype = quantized_dtype_for_momentum_buffers()
|
| 1150 |
+
if qdtype != jnp.float32:
|
| 1151 |
+
m1_shape_and_dtype = [list(param.shape), qdtype]
|
| 1152 |
+
m2_shape_and_dtype = [list(param.shape), qdtype]
|
| 1153 |
+
|
| 1154 |
+
m1_scale_shape_and_dtype = [list(param.shape)[1:], qdtype]
|
| 1155 |
+
m2_scale_shape_and_dtype = [list(param.shape)[1:], qdtype]
|
| 1156 |
+
|
| 1157 |
+
local_stats_flat.append(
|
| 1158 |
+
LocalShardedParameterStats(
|
| 1159 |
+
QuantizedValue(
|
| 1160 |
+
diagonal_statistics_shape_and_dtype,
|
| 1161 |
+
[],
|
| 1162 |
+
diagonal_statistics_scale_shape_and_dtype,
|
| 1163 |
+
quantized_dtype_for_diagonal_statistics_buffers(),
|
| 1164 |
+
False,
|
| 1165 |
+
list(param.shape),
|
| 1166 |
+
),
|
| 1167 |
+
QuantizedValue(
|
| 1168 |
+
m1_shape_and_dtype,
|
| 1169 |
+
[],
|
| 1170 |
+
m1_scale_shape_and_dtype,
|
| 1171 |
+
quantized_dtype_for_momentum_buffers(),
|
| 1172 |
+
False,
|
| 1173 |
+
list(param.shape),
|
| 1174 |
+
),
|
| 1175 |
+
QuantizedValue(
|
| 1176 |
+
m2_shape_and_dtype,
|
| 1177 |
+
[],
|
| 1178 |
+
m2_scale_shape_and_dtype,
|
| 1179 |
+
quantized_dtype_for_momentum_buffers(),
|
| 1180 |
+
False,
|
| 1181 |
+
list(param.shape),
|
| 1182 |
+
),
|
| 1183 |
+
init_training_metrics_shapes(len(sizes)),
|
| 1184 |
+
index_start,
|
| 1185 |
+
sizes,
|
| 1186 |
+
)
|
| 1187 |
+
)
|
| 1188 |
+
|
| 1189 |
+
local_stats = jax.tree_unflatten(treedef, local_stats_flat)
|
| 1190 |
+
max_statistics_size = _max_statistics_size_from_params(params_flat)
|
| 1191 |
+
to_pad = -num_statistics % num_devices_for_pjit
|
| 1192 |
+
num_statistics += to_pad
|
| 1193 |
+
statistics_shape = [num_statistics, max_statistics_size, max_statistics_size]
|
| 1194 |
+
global_stats = GlobalShardedParameterStats(
|
| 1195 |
+
[statistics_shape, jnp.float32],
|
| 1196 |
+
[statistics_shape, jnp.float32],
|
| 1197 |
+
[[num_statistics], jnp.int32],
|
| 1198 |
+
)
|
| 1199 |
+
return ShampooState(
|
| 1200 |
+
count=[[], jnp.float32],
|
| 1201 |
+
stats=ShardedShampooStats(global_stats, local_stats),
|
| 1202 |
+
)
|
| 1203 |
+
|
| 1204 |
def sharded_update_fn(grads, state, params):
|
| 1205 |
"""Transform the input gradient and update all statistics in sharded mode.
|
| 1206 |
|
|
|
|
| 1228 |
params_flat,
|
| 1229 |
)
|
| 1230 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1231 |
outputs = jax.tree_multimap(
|
| 1232 |
lambda g, s, p: _transform_grad(g, s, p, state.count),
|
| 1233 |
grads_flat,
|
|
|
|
| 1242 |
_convert_from_parameter_stats(new_stat, local_stat)
|
| 1243 |
for new_stat, local_stat in zip(new_stats_flat, local_stats_flat)
|
| 1244 |
]
|
|
|
|
| 1245 |
|
| 1246 |
max_size = global_stats.statistics.shape[1]
|
| 1247 |
new_padded_statistics = []
|
|
|
|
| 1264 |
for _ in range(to_pad)
|
| 1265 |
]
|
| 1266 |
)
|
|
|
|
| 1267 |
new_stacked_padded_statistics = jnp.stack(new_padded_statistics)
|
| 1268 |
+
new_stacked_padded_statistics = pjit.with_sharding_constraint(
|
| 1269 |
+
new_stacked_padded_statistics, statistics_partition_spec
|
| 1270 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1271 |
|
| 1272 |
def _internal_inverse_pth_root_all():
|
| 1273 |
+
preconditioners, errors = _matrix_inverse_pth_root_pjit(
|
| 1274 |
+
new_stacked_padded_statistics,
|
| 1275 |
+
global_stats.exponents,
|
| 1276 |
+
statistics_partition_spec,
|
| 1277 |
)
|
| 1278 |
return preconditioners, errors
|
| 1279 |
|
|
|
|
| 1284 |
# shaped tensors. Note statistics will be ignored as we are passing in
|
| 1285 |
# a large init value for error.
|
| 1286 |
preconditioners_init = new_stacked_padded_statistics
|
| 1287 |
+
n = new_stacked_padded_statistics.shape[0]
|
| 1288 |
+
errors_init = jnp.ones([n], jnp.float32) * inverse_failure_threshold
|
| 1289 |
init_state = [preconditioners_init, errors_init]
|
| 1290 |
perform_step = state.count % preconditioning_compute_steps == 0
|
| 1291 |
new_preconditioners, errors = efficient_cond(
|
| 1292 |
perform_step, _internal_inverse_pth_root_all, init_state
|
| 1293 |
)
|
| 1294 |
|
| 1295 |
+
new_local_stats_flat = _add_error_into_local_stats(
|
| 1296 |
+
new_local_stats_flat, errors, inverse_failure_threshold
|
| 1297 |
+
)
|
| 1298 |
+
new_local_stats = jax.tree_unflatten(treedef, new_local_stats_flat)
|
| 1299 |
errors = errors.reshape((-1, 1, 1))
|
| 1300 |
predicate = jnp.logical_or(
|
| 1301 |
jnp.isnan(errors), errors >= inverse_failure_threshold
|
|
|
|
| 1306 |
+ (1.0 - predicate) * new_preconditioners
|
| 1307 |
)
|
| 1308 |
new_global_stats = GlobalShardedParameterStats(
|
| 1309 |
+
new_stacked_padded_statistics,
|
| 1310 |
+
new_conditional_preconditioners,
|
| 1311 |
+
global_stats.exponents,
|
| 1312 |
)
|
| 1313 |
new_shampoo_state = ShampooState(
|
| 1314 |
count=state.count + 1,
|
|
|
|
| 1339 |
_maybe_quantize_preconditioners(preconditioners),
|
| 1340 |
_quantize_momentum(jnp.zeros_like(param)),
|
| 1341 |
_quantize_momentum(jnp.zeros_like(param)),
|
| 1342 |
+
init_training_metrics(len(statistics)),
|
| 1343 |
)
|
| 1344 |
|
| 1345 |
return ShampooState(
|
|
|
|
| 1384 |
state.preconditioners,
|
| 1385 |
state.diagonal_momentum,
|
| 1386 |
state.momentum,
|
| 1387 |
+
state.training_metrics,
|
| 1388 |
)
|
| 1389 |
|
| 1390 |
def _matrix_inverse_pth_root_vmap(xs, ps):
|
|
|
|
| 1408 |
|
| 1409 |
return jax.vmap(matrix_inverse_pth_root_wrapper)(qxs, qds, qbs, ps)
|
| 1410 |
|
| 1411 |
+
def _matrix_inverse_pth_root_pjit(xs, ps, statistics_partition_spec=None):
|
|
|
|
| 1412 |
# Partition the concatenated statistics matrix across all cores.
|
| 1413 |
+
pspec_for_partition = preconditioner_partition_spec
|
| 1414 |
+
partitioned_xs = pjit.with_sharding_constraint(xs, pspec_for_partition)
|
| 1415 |
+
partitioned_ps = pjit.with_sharding_constraint(
|
| 1416 |
+
ps, pjit.PartitionSpec(preconditioner_partition_spec[0])
|
| 1417 |
+
)
|
|
|
|
|
|
|
| 1418 |
# Run matrix inverse pth root on each shard.
|
| 1419 |
partitioned_preconditioners, partitioned_errors = _matrix_inverse_pth_root_vmap(
|
| 1420 |
partitioned_xs, partitioned_ps
|
| 1421 |
)
|
| 1422 |
+
# Reshard output to have the same PSpec as input. This is required to avoid
|
| 1423 |
+
# vmap seeing the full set of statistics.
|
| 1424 |
+
partitioned_preconditioners = pjit.with_sharding_constraint(
|
| 1425 |
+
partitioned_preconditioners, pspec_for_partition
|
| 1426 |
+
)
|
| 1427 |
# Recombine the outputs at each core.
|
| 1428 |
+
preconditioners = pjit.with_sharding_constraint(
|
| 1429 |
+
partitioned_preconditioners, statistics_partition_spec
|
| 1430 |
+
)
|
| 1431 |
+
errors = pjit.with_sharding_constraint(partitioned_errors, pjit.PartitionSpec())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1432 |
return preconditioners, errors
|
| 1433 |
|
| 1434 |
def _pmap_compute_preconditioners(
|
|
|
|
| 1510 |
)
|
| 1511 |
|
| 1512 |
new_preconditioners_flat = []
|
| 1513 |
+
new_errors_flat = []
|
| 1514 |
for p, shape, prev_p, error in zip(
|
| 1515 |
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
| 1516 |
):
|
| 1517 |
new_preconditioners_flat.append(
|
| 1518 |
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
| 1519 |
)
|
| 1520 |
+
new_errors_flat.append(error)
|
| 1521 |
|
| 1522 |
assert len(states) == len(num_statistics_per_state)
|
| 1523 |
assert len(new_preconditioners_flat) == num_statistics
|
| 1524 |
+
assert len(new_errors_flat) == num_statistics
|
| 1525 |
|
| 1526 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1527 |
preconditioners_for_states = []
|
| 1528 |
idx = 0
|
| 1529 |
+
errors_for_states = []
|
| 1530 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1531 |
if num_statistics == 0:
|
| 1532 |
preconditioners_for_states.append([])
|
| 1533 |
+
errors_for_states.append([])
|
| 1534 |
else:
|
| 1535 |
preconditioners_for_state = new_preconditioners_flat[
|
| 1536 |
idx : idx + num_statistics
|
| 1537 |
]
|
| 1538 |
assert len(state.statistics) == len(preconditioners_for_state)
|
| 1539 |
preconditioners_for_states.append(preconditioners_for_state)
|
| 1540 |
+
|
| 1541 |
+
errors_for_state = jnp.stack(
|
| 1542 |
+
new_errors_flat[idx : idx + num_statistics]
|
| 1543 |
+
)
|
| 1544 |
+
assert len(state.statistics) == len(errors_for_state)
|
| 1545 |
+
errors_for_states.append(errors_for_state)
|
| 1546 |
+
|
| 1547 |
idx += num_statistics
|
| 1548 |
new_states = []
|
| 1549 |
+
for state, new_preconditioners, new_errors in zip(
|
| 1550 |
+
states, preconditioners_for_states, errors_for_states
|
| 1551 |
+
):
|
| 1552 |
+
if state.statistics:
|
| 1553 |
+
new_errors = jnp.where(
|
| 1554 |
+
jnp.logical_and(
|
| 1555 |
+
new_errors > 0.0, new_errors != inverse_failure_threshold
|
| 1556 |
+
),
|
| 1557 |
+
new_errors,
|
| 1558 |
+
state.training_metrics.inverse_pth_root_errors,
|
| 1559 |
+
)
|
| 1560 |
+
new_training_metrics = TrainingMetrics(new_errors)
|
| 1561 |
new_states.append(
|
| 1562 |
ParameterStats(
|
| 1563 |
state.diagonal_statistics,
|
|
|
|
| 1565 |
new_preconditioners,
|
| 1566 |
state.diagonal_momentum,
|
| 1567 |
state.momentum,
|
| 1568 |
+
new_training_metrics,
|
| 1569 |
)
|
| 1570 |
)
|
| 1571 |
|
|
|
|
| 1724 |
new_quantized_preconditioners_flat = []
|
| 1725 |
new_quantized_diagonals_flat = []
|
| 1726 |
new_quantized_bucket_sizes_flat = []
|
| 1727 |
+
new_errors_flat = []
|
| 1728 |
for p, d, b, shape, prev_p, error in zip(
|
| 1729 |
quantized_preconditioners_flat,
|
| 1730 |
quantized_diagonals_flat,
|
|
|
|
| 1744 |
new_quantized_bucket_sizes_flat.append(
|
| 1745 |
_select_preconditioner(error, b[: shape[0]], prev_p.bucket_size)
|
| 1746 |
)
|
| 1747 |
+
new_errors_flat.append(error)
|
| 1748 |
|
| 1749 |
assert len(states) == len(num_statistics_per_state)
|
| 1750 |
assert len(new_quantized_preconditioners_flat) == num_statistics
|
|
|
|
| 1753 |
|
| 1754 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1755 |
preconditioners_for_states = []
|
| 1756 |
+
errors_for_states = []
|
| 1757 |
idx = 0
|
| 1758 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1759 |
if num_statistics == 0:
|
| 1760 |
preconditioners_for_states.append([])
|
| 1761 |
+
errors_for_states.append([])
|
| 1762 |
else:
|
| 1763 |
quantized_preconditioners_for_state = (
|
| 1764 |
new_quantized_preconditioners_flat[idx : idx + num_statistics]
|
|
|
|
| 1769 |
quantized_bucket_sizes_for_state = new_quantized_bucket_sizes_flat[
|
| 1770 |
idx : idx + num_statistics
|
| 1771 |
]
|
| 1772 |
+
errors_for_state = jnp.stack(
|
| 1773 |
+
new_errors_flat[idx : idx + num_statistics]
|
| 1774 |
+
)
|
| 1775 |
|
| 1776 |
assert len(state.statistics) == len(quantized_preconditioners_for_state)
|
| 1777 |
assert len(state.statistics) == len(quantized_diagonals_for_state)
|
| 1778 |
assert len(state.statistics) == len(quantized_bucket_sizes_for_state)
|
| 1779 |
+
assert len(state.statistics) == len(errors_for_state)
|
| 1780 |
|
| 1781 |
quantized_preconditioners = []
|
| 1782 |
for qv, qd, qb in zip(
|
|
|
|
| 1788 |
QuantizedValue(qv, qd, qb, qv.dtype, True, list(qv.shape))
|
| 1789 |
)
|
| 1790 |
preconditioners_for_states.append(quantized_preconditioners)
|
| 1791 |
+
errors_for_states.append(errors_for_state)
|
| 1792 |
idx += num_statistics
|
| 1793 |
new_states = []
|
| 1794 |
+
for state, new_preconditioners, new_errors in zip(
|
| 1795 |
+
states, preconditioners_for_states, errors_for_states
|
| 1796 |
+
):
|
| 1797 |
+
if state.statistics:
|
| 1798 |
+
new_errors = jnp.where(
|
| 1799 |
+
jnp.logical_and(
|
| 1800 |
+
new_errors > 0.0, new_errors != inverse_failure_threshold
|
| 1801 |
+
),
|
| 1802 |
+
new_errors,
|
| 1803 |
+
state.training_metrics.inverse_pth_root_errors,
|
| 1804 |
+
)
|
| 1805 |
+
new_training_metrics = TrainingMetrics(new_errors)
|
| 1806 |
new_states.append(
|
| 1807 |
ParameterStats(
|
| 1808 |
state.diagonal_statistics,
|
|
|
|
| 1810 |
new_preconditioners,
|
| 1811 |
state.diagonal_momentum,
|
| 1812 |
state.momentum,
|
| 1813 |
+
new_training_metrics,
|
| 1814 |
)
|
| 1815 |
)
|
| 1816 |
|
|
|
|
| 1892 |
)
|
| 1893 |
|
| 1894 |
new_preconditioners_flat = []
|
| 1895 |
+
new_errors_flat = []
|
| 1896 |
for p, shape, prev_p, error in zip(
|
| 1897 |
preconditioners_flat, original_shapes, prev_preconditioners, errors_flat
|
| 1898 |
):
|
| 1899 |
new_preconditioners_flat.append(
|
| 1900 |
_select_preconditioner(error, p[: shape[0], : shape[1]], prev_p)
|
| 1901 |
)
|
| 1902 |
+
new_errors_flat.append(error)
|
| 1903 |
|
| 1904 |
assert len(states) == len(num_statistics_per_state)
|
| 1905 |
assert len(new_preconditioners_flat) == num_statistics
|
| 1906 |
|
| 1907 |
# Add back empty preconditioners so we that we can set the optimizer state.
|
| 1908 |
preconditioners_for_states = []
|
| 1909 |
+
errors_for_states = []
|
| 1910 |
idx = 0
|
| 1911 |
for num_statistics, state in zip(num_statistics_per_state, states):
|
| 1912 |
if num_statistics == 0:
|
| 1913 |
preconditioners_for_states.append([])
|
| 1914 |
+
errors_for_states.append([])
|
| 1915 |
else:
|
| 1916 |
preconditioners_for_state = new_preconditioners_flat[
|
| 1917 |
idx : idx + num_statistics
|
| 1918 |
]
|
| 1919 |
assert len(state.statistics) == len(preconditioners_for_state)
|
| 1920 |
preconditioners_for_states.append(preconditioners_for_state)
|
| 1921 |
+
|
| 1922 |
+
errors_for_state = jnp.stack(
|
| 1923 |
+
new_errors_flat[idx : idx + num_statistics]
|
| 1924 |
+
)
|
| 1925 |
+
assert len(state.statistics) == len(errors_for_state)
|
| 1926 |
+
errors_for_states.append(errors_for_state)
|
| 1927 |
idx += num_statistics
|
| 1928 |
+
|
| 1929 |
new_states = []
|
| 1930 |
+
for state, new_preconditioners, new_errors in zip(
|
| 1931 |
+
states, preconditioners_for_states, errors_for_states
|
| 1932 |
+
):
|
| 1933 |
+
if state.statistics:
|
| 1934 |
+
new_errors = jnp.where(
|
| 1935 |
+
jnp.logical_and(
|
| 1936 |
+
new_errors > 0.0, new_errors != inverse_failure_threshold
|
| 1937 |
+
),
|
| 1938 |
+
new_errors,
|
| 1939 |
+
state.training_metrics.inverse_pth_root_errors,
|
| 1940 |
+
)
|
| 1941 |
+
new_training_metrics = TrainingMetrics(new_errors)
|
| 1942 |
new_states.append(
|
| 1943 |
ParameterStats(
|
| 1944 |
state.diagonal_statistics,
|
|
|
|
| 1946 |
new_preconditioners,
|
| 1947 |
state.diagonal_momentum,
|
| 1948 |
state.momentum,
|
| 1949 |
+
new_training_metrics,
|
| 1950 |
)
|
| 1951 |
)
|
| 1952 |
|
|
|
|
| 2133 |
state.preconditioners,
|
| 2134 |
_quantize_momentum(grafting_update_with_wd_momentum),
|
| 2135 |
_quantize_momentum(shampoo_update_with_wd_momentum),
|
| 2136 |
+
state.training_metrics,
|
| 2137 |
)
|
| 2138 |
+
|
| 2139 |
return transformed_update, param_stats
|
| 2140 |
|
| 2141 |
def update_fn(grads, state, params):
|
|
|
|
| 2178 |
return updates, new_state
|
| 2179 |
|
| 2180 |
if shard_optimizer_states:
|
| 2181 |
+
# Hijacks the init_fn signature so we can return an OptState with
|
| 2182 |
+
# appropriate init_fns.
|
| 2183 |
+
def _init_fns(unused_params):
|
| 2184 |
+
return InitFnState(
|
| 2185 |
+
init_fn=sharded_init_fn,
|
| 2186 |
+
pspec_fn=sharded_init_partition_spec_fn,
|
| 2187 |
+
shape_and_dtype_fn=sharded_init_shape_and_dtype_fn,
|
| 2188 |
+
)
|
| 2189 |
+
|
| 2190 |
+
return optax.GradientTransformation(_init_fns, sharded_update_fn)
|
| 2191 |
else:
|
| 2192 |
return optax.GradientTransformation(init_fn, update_fn)
|