Spaces:
Running
Running
Merge pull request #107 from borisdayma/feat-seq2seq
Browse files- dalle_mini/model.py +25 -30
- dev/inference/samples.txt +4 -9
- dev/seq2seq/run_seq2seq_flax.py +314 -293
- setup.cfg +2 -0
dalle_mini/model.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import jax
|
| 3 |
import flax.linen as nn
|
| 4 |
|
|
@@ -7,60 +6,56 @@ from transformers.models.bart.modeling_flax_bart import (
|
|
| 7 |
FlaxBartForConditionalGenerationModule,
|
| 8 |
FlaxBartForConditionalGeneration,
|
| 9 |
FlaxBartEncoder,
|
| 10 |
-
FlaxBartDecoder
|
| 11 |
)
|
| 12 |
|
| 13 |
from transformers import BartConfig
|
| 14 |
|
| 15 |
|
| 16 |
-
# Model hyperparameters, for convenience
|
| 17 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
| 18 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
| 19 |
-
BOS_TOKEN_ID = 16384
|
| 20 |
-
BASE_MODEL = 'facebook/bart-large-cnn' # we currently have issues with bart-large
|
| 21 |
-
|
| 22 |
-
|
| 23 |
class CustomFlaxBartModule(FlaxBartModule):
|
| 24 |
def setup(self):
|
| 25 |
-
# check config is valid, otherwise set default values
|
| 26 |
-
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
|
| 27 |
-
self.config.max_position_embeddings_decoder = getattr(self.config, 'max_position_embeddings_decoder', OUTPUT_LENGTH)
|
| 28 |
-
|
| 29 |
# we keep shared to easily load pre-trained weights
|
| 30 |
self.shared = nn.Embed(
|
| 31 |
self.config.vocab_size,
|
| 32 |
self.config.d_model,
|
| 33 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std
|
| 34 |
-
dtype=self.dtype,
|
| 35 |
)
|
| 36 |
# a separate embedding is used for the decoder
|
| 37 |
self.decoder_embed = nn.Embed(
|
| 38 |
-
self.config.
|
| 39 |
self.config.d_model,
|
| 40 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std
|
| 41 |
-
|
|
|
|
|
|
|
| 42 |
)
|
| 43 |
-
self.encoder = FlaxBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared)
|
| 44 |
|
| 45 |
# the decoder has a different config
|
|
|
|
| 46 |
decoder_config = BartConfig(self.config.to_dict())
|
| 47 |
-
decoder_config.max_position_embeddings =
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
class CustomFlaxBartForConditionalGenerationModule(FlaxBartForConditionalGenerationModule):
|
| 52 |
-
def setup(self):
|
| 53 |
-
# check config is valid, otherwise set default values
|
| 54 |
-
self.config.vocab_size_output = getattr(self.config, 'vocab_size_output', OUTPUT_VOCAB_SIZE)
|
| 55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
| 57 |
self.lm_head = nn.Dense(
|
| 58 |
-
self.config.
|
| 59 |
use_bias=False,
|
| 60 |
-
|
| 61 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 62 |
)
|
| 63 |
-
self.final_logits_bias = self.param(
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
| 66 |
module_class = CustomFlaxBartForConditionalGenerationModule
|
|
|
|
|
|
|
| 1 |
import jax
|
| 2 |
import flax.linen as nn
|
| 3 |
|
|
|
|
| 6 |
FlaxBartForConditionalGenerationModule,
|
| 7 |
FlaxBartForConditionalGeneration,
|
| 8 |
FlaxBartEncoder,
|
| 9 |
+
FlaxBartDecoder,
|
| 10 |
)
|
| 11 |
|
| 12 |
from transformers import BartConfig
|
| 13 |
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
class CustomFlaxBartModule(FlaxBartModule):
|
| 16 |
def setup(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# we keep shared to easily load pre-trained weights
|
| 18 |
self.shared = nn.Embed(
|
| 19 |
self.config.vocab_size,
|
| 20 |
self.config.d_model,
|
| 21 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
|
|
|
| 22 |
)
|
| 23 |
# a separate embedding is used for the decoder
|
| 24 |
self.decoder_embed = nn.Embed(
|
| 25 |
+
self.config.image_vocab_size + 1,
|
| 26 |
self.config.d_model,
|
| 27 |
+
embedding_init=jax.nn.initializers.normal(self.config.init_std),
|
| 28 |
+
)
|
| 29 |
+
self.encoder = FlaxBartEncoder(
|
| 30 |
+
self.config, dtype=self.dtype, embed_tokens=self.shared
|
| 31 |
)
|
|
|
|
| 32 |
|
| 33 |
# the decoder has a different config
|
| 34 |
+
# TODO: should not be needed once we have custom config/module
|
| 35 |
decoder_config = BartConfig(self.config.to_dict())
|
| 36 |
+
decoder_config.max_position_embeddings = (
|
| 37 |
+
self.config.image_length + 1 # image tokens + BOS
|
| 38 |
+
)
|
| 39 |
+
decoder_config.vocab_size = self.config.image_vocab_size + 1
|
| 40 |
+
self.decoder = FlaxBartDecoder(
|
| 41 |
+
decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed
|
| 42 |
+
)
|
| 43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
+
class CustomFlaxBartForConditionalGenerationModule(
|
| 46 |
+
FlaxBartForConditionalGenerationModule
|
| 47 |
+
):
|
| 48 |
+
def setup(self):
|
| 49 |
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
| 50 |
self.lm_head = nn.Dense(
|
| 51 |
+
self.config.image_vocab_size + 1, # encoded image token space + 1 for bos
|
| 52 |
use_bias=False,
|
| 53 |
+
kernel_init=jax.nn.initializers.normal(self.config.init_std),
|
|
|
|
| 54 |
)
|
| 55 |
+
self.final_logits_bias = self.param(
|
| 56 |
+
"final_logits_bias", self.bias_init, (1, self.config.image_vocab_size + 1)
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
|
| 60 |
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
| 61 |
module_class = CustomFlaxBartForConditionalGenerationModule
|
dev/inference/samples.txt
CHANGED
|
@@ -24,7 +24,6 @@ underwater cathedral
|
|
| 24 |
a photo of a fantasy version of New York City
|
| 25 |
a picture of fantasy kingdoms
|
| 26 |
a volcano erupting next to San Francisco golden gate bridge
|
| 27 |
-
big wave destroying a city
|
| 28 |
Paris in a far future, futuristic Paris
|
| 29 |
real painting of an alien from Monet
|
| 30 |
the communist statue of liberty
|
|
@@ -54,16 +53,16 @@ a long line of green blocks on a beach at subset
|
|
| 54 |
a long line of peaches on a beach at sunset
|
| 55 |
a picture of a castle from minecraft
|
| 56 |
a cute pikachu teapot
|
| 57 |
-
an illustration of pikachu sitting on a bench
|
| 58 |
-
mario is jumping over a zebra
|
| 59 |
famous anime hero
|
| 60 |
star wars concept art
|
| 61 |
a cartoon of a superhero bear
|
| 62 |
an illustration of a cute skeleton wearing a blue hoodie
|
| 63 |
illustration of a baby shark swimming around corals
|
|
|
|
| 64 |
Cartoon of a carrot with big eyes
|
| 65 |
logo of a robot wearing glasses and reading a book
|
| 66 |
-
a cactus lifting weights
|
| 67 |
illustration of a cactus lifting weigths
|
| 68 |
logo of a cactus lifting weights
|
| 69 |
a photo of a camera from the future
|
|
@@ -72,7 +71,6 @@ a collection of glasses is sitting on a table
|
|
| 72 |
a painting of a capybara sitting on a mountain during fall in surrealist style
|
| 73 |
a pentagonal green clock
|
| 74 |
a pixel art illustration of an eagle sitting in a field in the afternoon
|
| 75 |
-
a professional high-quality emoji of a lovestruck cup of boba
|
| 76 |
a small red block sitting on a large green block
|
| 77 |
a storefront that has the word 'openai' written on it
|
| 78 |
a tatoo of a black broccoli
|
|
@@ -88,10 +86,7 @@ urinals are lined up in a jungle
|
|
| 88 |
a muscular banana sitting upright on a bench smoking watching a banana on television, high definition photography
|
| 89 |
a human face
|
| 90 |
a person is holding a phone and a waterbottle, running a marathon
|
| 91 |
-
a photograph of Ellen G. White
|
| 92 |
Young woman riding her bike through the forest
|
| 93 |
-
a portrait of a nightmare creature watching at you
|
| 94 |
-
a white room full of a black substance
|
| 95 |
the best soccer team of the world
|
| 96 |
the best basketball team of the world
|
| 97 |
the best football team of the world
|
|
@@ -100,6 +95,7 @@ sad, sadness
|
|
| 100 |
the representation of infinity
|
| 101 |
the end of the world
|
| 102 |
the last sunrise on earth
|
|
|
|
| 103 |
an avocado armchair
|
| 104 |
an armchair in the shape of an avocado
|
| 105 |
illustration of an avocado armchair
|
|
@@ -109,4 +105,3 @@ an avocado armchair flying into space
|
|
| 109 |
a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps
|
| 110 |
an illustration of an avocado in a christmas sweater staring at its reflection in a mirror
|
| 111 |
illustration of an avocado armchair getting married to a pineapple
|
| 112 |
-
an illustration of an avocado in a beanie riding a motorcycle
|
|
|
|
| 24 |
a photo of a fantasy version of New York City
|
| 25 |
a picture of fantasy kingdoms
|
| 26 |
a volcano erupting next to San Francisco golden gate bridge
|
|
|
|
| 27 |
Paris in a far future, futuristic Paris
|
| 28 |
real painting of an alien from Monet
|
| 29 |
the communist statue of liberty
|
|
|
|
| 53 |
a long line of peaches on a beach at sunset
|
| 54 |
a picture of a castle from minecraft
|
| 55 |
a cute pikachu teapot
|
| 56 |
+
an illustration of pikachu sitting on a bench eating an ice cream
|
| 57 |
+
mario is jumping over a zebra
|
| 58 |
famous anime hero
|
| 59 |
star wars concept art
|
| 60 |
a cartoon of a superhero bear
|
| 61 |
an illustration of a cute skeleton wearing a blue hoodie
|
| 62 |
illustration of a baby shark swimming around corals
|
| 63 |
+
an illustration of an avocado in a beanie riding a motorcycle
|
| 64 |
Cartoon of a carrot with big eyes
|
| 65 |
logo of a robot wearing glasses and reading a book
|
|
|
|
| 66 |
illustration of a cactus lifting weigths
|
| 67 |
logo of a cactus lifting weights
|
| 68 |
a photo of a camera from the future
|
|
|
|
| 71 |
a painting of a capybara sitting on a mountain during fall in surrealist style
|
| 72 |
a pentagonal green clock
|
| 73 |
a pixel art illustration of an eagle sitting in a field in the afternoon
|
|
|
|
| 74 |
a small red block sitting on a large green block
|
| 75 |
a storefront that has the word 'openai' written on it
|
| 76 |
a tatoo of a black broccoli
|
|
|
|
| 86 |
a muscular banana sitting upright on a bench smoking watching a banana on television, high definition photography
|
| 87 |
a human face
|
| 88 |
a person is holding a phone and a waterbottle, running a marathon
|
|
|
|
| 89 |
Young woman riding her bike through the forest
|
|
|
|
|
|
|
| 90 |
the best soccer team of the world
|
| 91 |
the best basketball team of the world
|
| 92 |
the best football team of the world
|
|
|
|
| 95 |
the representation of infinity
|
| 96 |
the end of the world
|
| 97 |
the last sunrise on earth
|
| 98 |
+
a portrait of a nightmare creature watching at you
|
| 99 |
an avocado armchair
|
| 100 |
an armchair in the shape of an avocado
|
| 101 |
illustration of an avocado armchair
|
|
|
|
| 105 |
a cute avocado armchair singing karaoke on stage in front of a crowd of strawberry shaped lamps
|
| 106 |
an illustration of an avocado in a christmas sweater staring at its reflection in a mirror
|
| 107 |
illustration of an avocado armchair getting married to a pineapple
|
|
|
dev/seq2seq/run_seq2seq_flax.py
CHANGED
|
@@ -17,11 +17,11 @@
|
|
| 17 |
Fine-tuning the library models for seq2seq, text to image.
|
| 18 |
Script adapted from run_summarization_flax.py
|
| 19 |
"""
|
| 20 |
-
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
|
| 21 |
|
| 22 |
import os
|
| 23 |
-
import logging
|
| 24 |
import sys
|
|
|
|
| 25 |
from dataclasses import dataclass, field
|
| 26 |
from pathlib import Path
|
| 27 |
from typing import Callable, Optional
|
|
@@ -38,31 +38,21 @@ import optax
|
|
| 38 |
import transformers
|
| 39 |
from flax import jax_utils, traverse_util
|
| 40 |
from flax.serialization import from_bytes, to_bytes
|
| 41 |
-
import flax.linen as nn
|
| 42 |
from flax.jax_utils import unreplicate
|
| 43 |
from flax.training import train_state
|
| 44 |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
| 45 |
from transformers import (
|
| 46 |
AutoTokenizer,
|
| 47 |
-
FlaxBartForConditionalGeneration,
|
| 48 |
HfArgumentParser,
|
| 49 |
-
TrainingArguments,
|
| 50 |
)
|
| 51 |
-
from transformers.models.bart.modeling_flax_bart import
|
| 52 |
|
| 53 |
import wandb
|
| 54 |
|
| 55 |
from dalle_mini.text import TextNormalizer
|
|
|
|
| 56 |
|
| 57 |
-
logger =
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
# Model hyperparameters, for convenience
|
| 61 |
-
# TODO: the model has now it's own definition file and should be imported
|
| 62 |
-
OUTPUT_VOCAB_SIZE = 16384 + 1 # encoded image token space + 1 for bos
|
| 63 |
-
OUTPUT_LENGTH = 256 + 1 # number of encoded tokens + 1 for bos
|
| 64 |
-
BOS_TOKEN_ID = 16384
|
| 65 |
-
BASE_MODEL = "facebook/bart-large-cnn" # we currently have issues with bart-large
|
| 66 |
|
| 67 |
|
| 68 |
@dataclass
|
|
@@ -72,36 +62,36 @@ class ModelArguments:
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
model_name_or_path: Optional[str] = field(
|
| 75 |
-
default=
|
| 76 |
metadata={
|
| 77 |
"help": "The model checkpoint for weights initialization."
|
| 78 |
"Don't set if you want to train a model from scratch."
|
| 79 |
},
|
| 80 |
)
|
| 81 |
-
|
| 82 |
default=None,
|
| 83 |
-
metadata={
|
| 84 |
-
"help": "Pretrained config name or path if not the same as model_name"
|
| 85 |
-
},
|
| 86 |
)
|
| 87 |
-
|
| 88 |
-
default=
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
metadata={
|
| 90 |
-
"help": "
|
| 91 |
},
|
| 92 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
dtype: Optional[str] = field(
|
| 94 |
default="float32",
|
| 95 |
metadata={
|
| 96 |
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
| 97 |
},
|
| 98 |
)
|
| 99 |
-
from_checkpoint: Optional[str] = field(
|
| 100 |
-
default=None,
|
| 101 |
-
metadata={
|
| 102 |
-
"help": "Loads a pretrained wandb checkpoint. Use artifact reference."
|
| 103 |
-
},
|
| 104 |
-
)
|
| 105 |
|
| 106 |
|
| 107 |
@dataclass
|
|
@@ -139,13 +129,11 @@ class DataTrainingArguments:
|
|
| 139 |
default=False,
|
| 140 |
metadata={"help": "Whether to stream the dataset."},
|
| 141 |
)
|
| 142 |
-
|
| 143 |
-
default=
|
| 144 |
-
metadata={
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
default=None,
|
| 148 |
-
metadata={"help": "Length of validation dataset, required for streaming"},
|
| 149 |
)
|
| 150 |
max_source_length: Optional[int] = field(
|
| 151 |
default=128,
|
|
@@ -154,26 +142,6 @@ class DataTrainingArguments:
|
|
| 154 |
"than this will be truncated, sequences shorter will be padded."
|
| 155 |
},
|
| 156 |
)
|
| 157 |
-
no_decay: bool = field(
|
| 158 |
-
default=False,
|
| 159 |
-
metadata={"help": "Whether to use decay in the learning rate scheduler."},
|
| 160 |
-
)
|
| 161 |
-
max_target_length: Optional[int] = field(
|
| 162 |
-
default=OUTPUT_LENGTH,
|
| 163 |
-
metadata={
|
| 164 |
-
"help": "The maximum total sequence length for target text after tokenization. Sequences longer "
|
| 165 |
-
"than this will be truncated, sequences shorter will be padded."
|
| 166 |
-
},
|
| 167 |
-
)
|
| 168 |
-
val_max_target_length: Optional[int] = field(
|
| 169 |
-
default=OUTPUT_LENGTH,
|
| 170 |
-
metadata={
|
| 171 |
-
"help": "The maximum total sequence length for validation target text after tokenization. Sequences longer "
|
| 172 |
-
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`."
|
| 173 |
-
"This argument is also used to override the `max_length` param of `model.generate`, which is used "
|
| 174 |
-
"during evaluation."
|
| 175 |
-
},
|
| 176 |
-
)
|
| 177 |
max_train_samples: Optional[int] = field(
|
| 178 |
default=None,
|
| 179 |
metadata={
|
|
@@ -188,71 +156,144 @@ class DataTrainingArguments:
|
|
| 188 |
"value if set."
|
| 189 |
},
|
| 190 |
)
|
| 191 |
-
normalize_text: bool = field(
|
| 192 |
-
default=False,
|
| 193 |
-
metadata={"help": "Normalize/Simplify text"},
|
| 194 |
-
)
|
| 195 |
preprocessing_num_workers: Optional[int] = field(
|
| 196 |
-
default=80, # ensure we have the same datasets cached data and avoid using too much space
|
| 197 |
-
metadata={"help": "The number of processes to use for the preprocessing."},
|
| 198 |
-
)
|
| 199 |
-
source_prefix: Optional[str] = field(
|
| 200 |
default=None,
|
| 201 |
metadata={
|
| 202 |
-
"help": "
|
| 203 |
},
|
| 204 |
)
|
| 205 |
overwrite_cache: bool = field(
|
| 206 |
default=False,
|
| 207 |
-
metadata={
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
)
|
| 209 |
-
|
| 210 |
-
default=
|
| 211 |
-
metadata={"help": "Log frequency for metrics"},
|
| 212 |
)
|
| 213 |
log_model: bool = field(
|
| 214 |
default=False,
|
| 215 |
-
metadata={"help": "
|
| 216 |
)
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
metadata={
|
| 220 |
-
"help": "
|
| 221 |
},
|
| 222 |
)
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
"json",
|
| 236 |
-
"jsonl",
|
| 237 |
-
], "`train_file` should be a tsv, csv or json file."
|
| 238 |
-
if self.validation_file is not None:
|
| 239 |
-
extension = self.validation_file.split(".")[-1]
|
| 240 |
-
assert extension in [
|
| 241 |
-
"tsv",
|
| 242 |
-
"csv",
|
| 243 |
-
"json",
|
| 244 |
-
"jsonl",
|
| 245 |
-
], "`validation_file` should be a tsv, csv or json file."
|
| 246 |
-
if self.val_max_target_length is None:
|
| 247 |
-
self.val_max_target_length = self.max_target_length
|
| 248 |
-
if self.streaming and (self.len_train is None or self.len_eval is None):
|
| 249 |
-
raise ValueError(
|
| 250 |
-
"Streaming requires providing length of training and validation datasets"
|
| 251 |
-
)
|
| 252 |
|
| 253 |
|
| 254 |
class TrainState(train_state.TrainState):
|
| 255 |
dropout_rng: jnp.ndarray = None
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
def replicate(self):
|
| 258 |
return jax_utils.replicate(self).replace(
|
|
@@ -264,81 +305,23 @@ class TrainState(train_state.TrainState):
|
|
| 264 |
with (Path(artifact_dir) / "opt_state.msgpack").open("rb") as f:
|
| 265 |
new_opt_state = from_bytes(self.opt_state, f.read())
|
| 266 |
|
| 267 |
-
# restore
|
| 268 |
with (Path(artifact_dir) / "training_state.json").open("r") as f:
|
| 269 |
training_state = json.load(f)
|
| 270 |
-
new_step = training_state["step"]
|
| 271 |
|
| 272 |
# replace state
|
| 273 |
-
return self.replace(
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
# check config is valid, otherwise set default values
|
| 279 |
-
self.config.vocab_size_output = getattr(
|
| 280 |
-
self.config, "vocab_size_output", OUTPUT_VOCAB_SIZE
|
| 281 |
-
)
|
| 282 |
-
self.config.max_position_embeddings_decoder = getattr(
|
| 283 |
-
self.config, "max_position_embeddings_decoder", OUTPUT_LENGTH
|
| 284 |
)
|
| 285 |
|
| 286 |
-
# we keep shared to easily load pre-trained weights
|
| 287 |
-
self.shared = nn.Embed(
|
| 288 |
-
self.config.vocab_size,
|
| 289 |
-
self.config.d_model,
|
| 290 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 291 |
-
dtype=self.dtype,
|
| 292 |
-
)
|
| 293 |
-
# a separate embedding is used for the decoder
|
| 294 |
-
self.decoder_embed = nn.Embed(
|
| 295 |
-
self.config.vocab_size_output,
|
| 296 |
-
self.config.d_model,
|
| 297 |
-
embedding_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 298 |
-
dtype=self.dtype,
|
| 299 |
-
)
|
| 300 |
-
self.encoder = FlaxBartEncoder(
|
| 301 |
-
self.config, dtype=self.dtype, embed_tokens=self.shared
|
| 302 |
-
)
|
| 303 |
-
|
| 304 |
-
# the decoder has a different config
|
| 305 |
-
decoder_config = BartConfig(self.config.to_dict())
|
| 306 |
-
decoder_config.max_position_embeddings = (
|
| 307 |
-
self.config.max_position_embeddings_decoder
|
| 308 |
-
)
|
| 309 |
-
decoder_config.vocab_size = self.config.vocab_size_output
|
| 310 |
-
self.decoder = FlaxBartDecoder(
|
| 311 |
-
decoder_config, dtype=self.dtype, embed_tokens=self.decoder_embed
|
| 312 |
-
)
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
class CustomFlaxBartForConditionalGenerationModule(
|
| 316 |
-
FlaxBartForConditionalGenerationModule
|
| 317 |
-
):
|
| 318 |
-
def setup(self):
|
| 319 |
-
# check config is valid, otherwise set default values
|
| 320 |
-
self.config.vocab_size_output = getattr(
|
| 321 |
-
self.config, "vocab_size_output", OUTPUT_VOCAB_SIZE
|
| 322 |
-
)
|
| 323 |
-
|
| 324 |
-
self.model = CustomFlaxBartModule(config=self.config, dtype=self.dtype)
|
| 325 |
-
self.lm_head = nn.Dense(
|
| 326 |
-
self.config.vocab_size_output,
|
| 327 |
-
use_bias=False,
|
| 328 |
-
dtype=self.dtype,
|
| 329 |
-
kernel_init=jax.nn.initializers.normal(self.config.init_std, self.dtype),
|
| 330 |
-
)
|
| 331 |
-
self.final_logits_bias = self.param(
|
| 332 |
-
"final_logits_bias", self.bias_init, (1, self.config.vocab_size_output)
|
| 333 |
-
)
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
class CustomFlaxBartForConditionalGeneration(FlaxBartForConditionalGeneration):
|
| 337 |
-
module_class = CustomFlaxBartForConditionalGenerationModule
|
| 338 |
-
|
| 339 |
|
| 340 |
def data_loader(
|
| 341 |
-
|
|
|
|
|
|
|
| 342 |
):
|
| 343 |
"""
|
| 344 |
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
|
@@ -346,7 +329,7 @@ def data_loader(
|
|
| 346 |
"""
|
| 347 |
steps_per_epoch = len(dataset) // batch_size
|
| 348 |
|
| 349 |
-
if
|
| 350 |
batch_idx = jax.random.permutation(rng, len(dataset))
|
| 351 |
else:
|
| 352 |
batch_idx = jnp.arange(len(dataset))
|
|
@@ -375,20 +358,20 @@ def data_loader_streaming(dataset: Dataset, batch_size: int):
|
|
| 375 |
|
| 376 |
|
| 377 |
def create_learning_rate_fn(
|
| 378 |
-
train_ds_size: int,
|
| 379 |
-
train_batch_size: int,
|
| 380 |
-
num_train_epochs: int,
|
| 381 |
num_warmup_steps: int,
|
| 382 |
learning_rate: float,
|
| 383 |
-
|
|
|
|
| 384 |
) -> Callable[[int], jnp.array]:
|
| 385 |
"""Returns a linear warmup, linear_decay learning rate function."""
|
| 386 |
-
|
| 387 |
-
|
|
|
|
|
|
|
| 388 |
warmup_fn = optax.linear_schedule(
|
| 389 |
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
| 390 |
)
|
| 391 |
-
if
|
| 392 |
return warmup_fn
|
| 393 |
decay_fn = optax.linear_schedule(
|
| 394 |
init_value=learning_rate,
|
|
@@ -412,10 +395,7 @@ def wandb_log(metrics, step=None, prefix=None):
|
|
| 412 |
|
| 413 |
|
| 414 |
def main():
|
| 415 |
-
# See all possible arguments
|
| 416 |
-
# or by passing the --help flag to this script.
|
| 417 |
-
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
| 418 |
-
|
| 419 |
parser = HfArgumentParser(
|
| 420 |
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
| 421 |
)
|
|
@@ -440,13 +420,13 @@ def main():
|
|
| 440 |
)
|
| 441 |
|
| 442 |
# Make one log on every process with the configuration for debugging.
|
| 443 |
-
|
| 444 |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 445 |
datefmt="%m/%d/%Y %H:%M:%S",
|
| 446 |
-
level=
|
| 447 |
)
|
| 448 |
# Setup logging, we only want one process per machine to log things on the screen.
|
| 449 |
-
logger.setLevel(
|
| 450 |
if jax.process_index() == 0:
|
| 451 |
datasets.utils.logging.set_verbosity_warning()
|
| 452 |
transformers.utils.logging.set_verbosity_info()
|
|
@@ -457,18 +437,19 @@ def main():
|
|
| 457 |
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 458 |
logger.info(f"Training/evaluation parameters {training_args}")
|
| 459 |
|
| 460 |
-
#
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
dataset = load_dataset(
|
| 469 |
data_args.dataset_repo_or_path,
|
| 470 |
data_files=data_files,
|
| 471 |
streaming=data_args.streaming,
|
|
|
|
| 472 |
)
|
| 473 |
|
| 474 |
# Set up wandb run
|
|
@@ -477,56 +458,66 @@ def main():
|
|
| 477 |
project="dalle-mini",
|
| 478 |
job_type="Seq2Seq",
|
| 479 |
config=parser.parse_args(),
|
| 480 |
-
save_code=True,
|
| 481 |
)
|
| 482 |
|
| 483 |
-
if
|
| 484 |
-
artifact = wandb.run.use_artifact(
|
| 485 |
artifact_dir = artifact.download()
|
|
|
|
|
|
|
| 486 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
| 487 |
|
| 488 |
# load tokenizer
|
| 489 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 490 |
artifact_dir,
|
| 491 |
-
use_fast=
|
| 492 |
)
|
| 493 |
|
| 494 |
else:
|
| 495 |
# Set up our new model config
|
|
|
|
| 496 |
config = BartConfig.from_pretrained(model_args.model_name_or_path)
|
| 497 |
-
config.
|
| 498 |
-
config.
|
| 499 |
-
|
| 500 |
-
|
| 501 |
-
)
|
| 502 |
-
config.
|
| 503 |
-
BOS_TOKEN_ID # should not be needed (as we generate until max_length)
|
| 504 |
-
)
|
| 505 |
-
config.eos_token_id = BOS_TOKEN_ID + 1 # unreachable
|
| 506 |
config.forced_bos_token_id = None # we don't need this token
|
| 507 |
config.forced_eos_token_id = None # we don't need this token
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
config.
|
| 512 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 513 |
|
| 514 |
# Create a custom model and initialize it randomly
|
| 515 |
model = CustomFlaxBartForConditionalGeneration(
|
| 516 |
-
config, seed=training_args.
|
| 517 |
)
|
| 518 |
|
| 519 |
# Load tokenizer
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
|
| 525 |
print(f"TPUs: {jax.device_count()}")
|
| 526 |
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
| 527 |
|
| 528 |
-
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
|
| 529 |
-
|
| 530 |
# Preprocessing the datasets.
|
| 531 |
# We need to tokenize inputs and targets.
|
| 532 |
|
|
@@ -543,7 +534,7 @@ def main():
|
|
| 543 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 544 |
return shifted_input_ids
|
| 545 |
|
| 546 |
-
text_normalizer = TextNormalizer() if
|
| 547 |
|
| 548 |
def normalize_text(example):
|
| 549 |
example[text_column] = text_normalizer(example[text_column])
|
|
@@ -551,7 +542,6 @@ def main():
|
|
| 551 |
|
| 552 |
def preprocess_function(examples):
|
| 553 |
inputs = examples[text_column]
|
| 554 |
-
inputs = [prefix + inp for inp in inputs] if prefix else inputs
|
| 555 |
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
| 556 |
model_inputs = tokenizer(
|
| 557 |
inputs,
|
|
@@ -589,8 +579,15 @@ def main():
|
|
| 589 |
else train_dataset.select(range(data_args.max_train_samples))
|
| 590 |
)
|
| 591 |
if data_args.streaming:
|
| 592 |
-
train_dataset = train_dataset.shuffle(1000, training_args.
|
| 593 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 594 |
train_dataset = (
|
| 595 |
train_dataset.map(normalize_text)
|
| 596 |
if data_args.streaming
|
|
@@ -627,7 +624,7 @@ def main():
|
|
| 627 |
if data_args.streaming
|
| 628 |
else eval_dataset.select(range(data_args.max_train_samples))
|
| 629 |
)
|
| 630 |
-
if
|
| 631 |
eval_dataset = (
|
| 632 |
eval_dataset.map(normalize_text)
|
| 633 |
if data_args.streaming
|
|
@@ -655,7 +652,7 @@ def main():
|
|
| 655 |
)
|
| 656 |
|
| 657 |
# Initialize our training
|
| 658 |
-
rng = jax.random.PRNGKey(training_args.
|
| 659 |
rng, dropout_rng = jax.random.split(rng)
|
| 660 |
|
| 661 |
# Store some constant
|
|
@@ -665,35 +662,29 @@ def main():
|
|
| 665 |
)
|
| 666 |
batch_size_per_update = train_batch_size * training_args.gradient_accumulation_steps
|
| 667 |
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
|
|
|
| 668 |
if data_args.streaming:
|
| 669 |
-
|
| 670 |
-
if
|
| 671 |
-
data_args.max_train_samples is not None
|
| 672 |
-
and data_args.max_train_samples < len_train_dataset
|
| 673 |
-
):
|
| 674 |
len_train_dataset = data_args.max_train_samples
|
| 675 |
-
|
| 676 |
-
len_eval_dataset = data_args.len_eval
|
| 677 |
-
if (
|
| 678 |
-
data_args.max_eval_samples is not None
|
| 679 |
-
and data_args.max_eval_samples < len_eval_dataset
|
| 680 |
-
):
|
| 681 |
len_eval_dataset = data_args.max_eval_samples
|
| 682 |
else:
|
| 683 |
len_train_dataset = len(train_dataset)
|
| 684 |
len_eval_dataset = len(eval_dataset)
|
| 685 |
-
steps_per_epoch =
|
| 686 |
-
|
| 687 |
-
|
|
|
|
|
|
|
|
|
|
| 688 |
|
| 689 |
# Create learning rate schedule
|
| 690 |
learning_rate_fn = create_learning_rate_fn(
|
| 691 |
-
len_train_dataset,
|
| 692 |
-
train_batch_size,
|
| 693 |
-
training_args.num_train_epochs,
|
| 694 |
training_args.warmup_steps,
|
| 695 |
training_args.learning_rate,
|
| 696 |
-
|
|
|
|
| 697 |
)
|
| 698 |
|
| 699 |
# We use Optax's "masking" functionality to not apply weight decay
|
|
@@ -701,8 +692,6 @@ def main():
|
|
| 701 |
# mask boolean with the same structure as the parameters.
|
| 702 |
# The mask is True for parameters that should be decayed.
|
| 703 |
# Note that this mask is specifically adapted for FlaxBart.
|
| 704 |
-
# For FlaxT5, one should correct the layer norm parameter naming
|
| 705 |
-
# accordingly - see `run_t5_mlm_flax.py` e.g.
|
| 706 |
def decay_mask_fn(params):
|
| 707 |
flat_params = traverse_util.flatten_dict(params)
|
| 708 |
layer_norm_params = [
|
|
@@ -725,6 +714,9 @@ def main():
|
|
| 725 |
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
|
| 726 |
optimizer = optax.adafactor(
|
| 727 |
learning_rate=learning_rate_fn,
|
|
|
|
|
|
|
|
|
|
| 728 |
)
|
| 729 |
else:
|
| 730 |
optimizer = optax.adamw(
|
|
@@ -749,11 +741,10 @@ def main():
|
|
| 749 |
tx=optimizer,
|
| 750 |
dropout_rng=dropout_rng,
|
| 751 |
)
|
| 752 |
-
if
|
| 753 |
-
# restore optimizer state and
|
|
|
|
| 754 |
state = state.restore_state(artifact_dir)
|
| 755 |
-
# TODO: number of remaining training epochs/steps and dataloader state need to be adjusted
|
| 756 |
-
# TODO: optimizer may use a different step for learning rate, we should serialize/restore entire state
|
| 757 |
|
| 758 |
# label smoothed cross entropy
|
| 759 |
def loss_fn(logits, labels):
|
|
@@ -762,7 +753,7 @@ def main():
|
|
| 762 |
return loss
|
| 763 |
|
| 764 |
# Define gradient update step fn
|
| 765 |
-
def train_step(state, batch):
|
| 766 |
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
| 767 |
|
| 768 |
def compute_loss(params, batch):
|
|
@@ -776,14 +767,20 @@ def main():
|
|
| 776 |
grad_fn = jax.value_and_grad(compute_loss)
|
| 777 |
loss, grads = grad_fn(state.params, batch)
|
| 778 |
grads = jax.lax.pmean(grads, "batch")
|
| 779 |
-
state = state.apply_gradients(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 780 |
|
| 781 |
metrics = {
|
| 782 |
"loss": loss,
|
| 783 |
"learning_rate": learning_rate_fn(state.step),
|
| 784 |
}
|
| 785 |
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
| 786 |
-
|
|
|
|
| 787 |
|
| 788 |
# Define eval fn
|
| 789 |
def eval_step(params, batch):
|
|
@@ -800,10 +797,6 @@ def main():
|
|
| 800 |
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
| 801 |
p_eval_step = jax.pmap(eval_step, "batch")
|
| 802 |
|
| 803 |
-
# Replicate the train state on each device
|
| 804 |
-
del model._params
|
| 805 |
-
state = state.replicate()
|
| 806 |
-
|
| 807 |
logger.info("***** Running training *****")
|
| 808 |
logger.info(f" Num examples = {len_train_dataset}")
|
| 809 |
logger.info(f" Num Epochs = {num_epochs}")
|
|
@@ -813,13 +806,12 @@ def main():
|
|
| 813 |
logger.info(
|
| 814 |
f" Total train batch size (w. parallel, distributed & gradient accumulation) = {batch_size_per_update}"
|
| 815 |
)
|
| 816 |
-
|
| 817 |
-
|
| 818 |
-
|
| 819 |
-
epochs = tqdm(range(num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0)
|
| 820 |
|
| 821 |
# set default x-axis as 'train/step'
|
| 822 |
-
wandb_log({}, step=
|
| 823 |
wandb.define_metric("*", step_metric="train/step")
|
| 824 |
|
| 825 |
# add interesting config parameters
|
|
@@ -828,11 +820,12 @@ def main():
|
|
| 828 |
"len_train": len_train_dataset,
|
| 829 |
"len_eval": len_eval_dataset,
|
| 830 |
"batch_size_per_update": batch_size_per_update,
|
| 831 |
-
"total_steps": total_steps,
|
| 832 |
-
"total_optimization_steps": total_optimization_steps,
|
| 833 |
}
|
| 834 |
)
|
| 835 |
|
|
|
|
|
|
|
|
|
|
| 836 |
def run_evaluation():
|
| 837 |
# ======================== Evaluating ==============================
|
| 838 |
eval_metrics = []
|
|
@@ -840,8 +833,12 @@ def main():
|
|
| 840 |
if data_args.streaming:
|
| 841 |
eval_loader = data_loader_streaming(eval_dataset, eval_batch_size)
|
| 842 |
else:
|
| 843 |
-
eval_loader = data_loader(
|
| 844 |
-
eval_steps =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
for batch in tqdm(
|
| 846 |
eval_loader,
|
| 847 |
desc="Evaluating...",
|
|
@@ -867,10 +864,9 @@ def main():
|
|
| 867 |
|
| 868 |
return eval_metrics
|
| 869 |
|
| 870 |
-
def run_save_model(state,
|
| 871 |
if jax.process_index() == 0:
|
| 872 |
-
params = jax.device_get(
|
| 873 |
-
|
| 874 |
# save model locally
|
| 875 |
model.save_pretrained(
|
| 876 |
training_args.output_dir,
|
|
@@ -881,24 +877,30 @@ def main():
|
|
| 881 |
tokenizer.save_pretrained(training_args.output_dir)
|
| 882 |
|
| 883 |
# save state
|
| 884 |
-
|
| 885 |
-
state = unreplicate(state)
|
| 886 |
with (Path(training_args.output_dir) / "opt_state.msgpack").open("wb") as f:
|
| 887 |
-
f.write(to_bytes(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 888 |
with (Path(training_args.output_dir) / "training_state.json").open(
|
| 889 |
"w"
|
| 890 |
) as f:
|
| 891 |
-
json.dump(
|
|
|
|
|
|
|
|
|
|
| 892 |
|
| 893 |
# save to W&B
|
| 894 |
-
if
|
| 895 |
# save some space
|
| 896 |
c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
|
| 897 |
-
c.cleanup(wandb.util.from_human_size("
|
| 898 |
|
| 899 |
-
metadata =
|
| 900 |
if eval_metrics is not None:
|
| 901 |
-
metadata["eval
|
| 902 |
artifact = wandb.Artifact(
|
| 903 |
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata
|
| 904 |
)
|
|
@@ -932,24 +934,26 @@ def main():
|
|
| 932 |
training_args.output_dir,
|
| 933 |
params=params,
|
| 934 |
push_to_hub=training_args.push_to_hub,
|
| 935 |
-
commit_message=f"Saving weights and logs
|
| 936 |
temp_dir=True, # avoid issues with being in a repository
|
| 937 |
)
|
| 938 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 939 |
for epoch in epochs:
|
|
|
|
| 940 |
# ======================== Training ================================
|
| 941 |
-
step
|
| 942 |
-
wandb_log({"train/epoch": epoch}, step=step)
|
| 943 |
|
| 944 |
# Generate an epoch by shuffling sampling indices from the train dataset
|
| 945 |
if data_args.streaming:
|
| 946 |
-
train_dataset.set_epoch(epoch)
|
| 947 |
train_loader = data_loader_streaming(train_dataset, train_batch_size)
|
| 948 |
else:
|
| 949 |
-
|
| 950 |
-
train_loader = data_loader(
|
| 951 |
-
input_rng, train_dataset, train_batch_size, shuffle=True
|
| 952 |
-
)
|
| 953 |
# train
|
| 954 |
for batch in tqdm(
|
| 955 |
train_loader,
|
|
@@ -958,32 +962,49 @@ def main():
|
|
| 958 |
leave=False,
|
| 959 |
total=steps_per_epoch,
|
| 960 |
):
|
| 961 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 962 |
step = unreplicate(state.step)
|
| 963 |
|
| 964 |
-
if step %
|
| 965 |
# log metrics
|
| 966 |
wandb_log(unreplicate(train_metric), step=step, prefix="train")
|
| 967 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 968 |
if training_args.eval_steps and step % training_args.eval_steps == 0:
|
| 969 |
-
run_evaluation()
|
| 970 |
|
| 971 |
-
if step %
|
| 972 |
-
run_save_model(state,
|
| 973 |
|
| 974 |
# log final train metrics
|
| 975 |
-
|
|
|
|
|
|
|
| 976 |
|
| 977 |
-
|
| 978 |
-
|
| 979 |
-
|
| 980 |
-
)
|
| 981 |
|
| 982 |
# Final evaluation
|
| 983 |
eval_metrics = run_evaluation()
|
| 984 |
|
| 985 |
# save checkpoint after each epoch
|
| 986 |
-
run_save_model(state,
|
| 987 |
|
| 988 |
|
| 989 |
if __name__ == "__main__":
|
|
|
|
| 17 |
Fine-tuning the library models for seq2seq, text to image.
|
| 18 |
Script adapted from run_summarization_flax.py
|
| 19 |
"""
|
|
|
|
| 20 |
|
| 21 |
import os
|
| 22 |
+
import logging
|
| 23 |
import sys
|
| 24 |
+
import time
|
| 25 |
from dataclasses import dataclass, field
|
| 26 |
from pathlib import Path
|
| 27 |
from typing import Callable, Optional
|
|
|
|
| 38 |
import transformers
|
| 39 |
from flax import jax_utils, traverse_util
|
| 40 |
from flax.serialization import from_bytes, to_bytes
|
|
|
|
| 41 |
from flax.jax_utils import unreplicate
|
| 42 |
from flax.training import train_state
|
| 43 |
from flax.training.common_utils import get_metrics, onehot, shard, shard_prng_key
|
| 44 |
from transformers import (
|
| 45 |
AutoTokenizer,
|
|
|
|
| 46 |
HfArgumentParser,
|
|
|
|
| 47 |
)
|
| 48 |
+
from transformers.models.bart.modeling_flax_bart import BartConfig
|
| 49 |
|
| 50 |
import wandb
|
| 51 |
|
| 52 |
from dalle_mini.text import TextNormalizer
|
| 53 |
+
from dalle_mini.model import CustomFlaxBartForConditionalGeneration
|
| 54 |
|
| 55 |
+
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
|
| 58 |
@dataclass
|
|
|
|
| 62 |
"""
|
| 63 |
|
| 64 |
model_name_or_path: Optional[str] = field(
|
| 65 |
+
default=None,
|
| 66 |
metadata={
|
| 67 |
"help": "The model checkpoint for weights initialization."
|
| 68 |
"Don't set if you want to train a model from scratch."
|
| 69 |
},
|
| 70 |
)
|
| 71 |
+
image_vocab_size: Optional[int] = field(
|
| 72 |
default=None,
|
| 73 |
+
metadata={"help": "Vocab size of image encoder"},
|
|
|
|
|
|
|
| 74 |
)
|
| 75 |
+
image_length: Optional[int] = field(
|
| 76 |
+
default=None,
|
| 77 |
+
metadata={"help": "Number of tokens per image"},
|
| 78 |
+
)
|
| 79 |
+
tokenizer_name: Optional[str] = field(
|
| 80 |
+
default=None,
|
| 81 |
metadata={
|
| 82 |
+
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path"
|
| 83 |
},
|
| 84 |
)
|
| 85 |
+
normalize_text: bool = field(
|
| 86 |
+
default=False,
|
| 87 |
+
metadata={"help": "Whether to normalize text or not."},
|
| 88 |
+
)
|
| 89 |
dtype: Optional[str] = field(
|
| 90 |
default="float32",
|
| 91 |
metadata={
|
| 92 |
"help": "Floating-point format in which the model weights should be initialized and trained. Choose one of `[float32, float16, bfloat16]`."
|
| 93 |
},
|
| 94 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
|
| 97 |
@dataclass
|
|
|
|
| 129 |
default=False,
|
| 130 |
metadata={"help": "Whether to stream the dataset."},
|
| 131 |
)
|
| 132 |
+
use_auth_token: bool = field(
|
| 133 |
+
default=False,
|
| 134 |
+
metadata={
|
| 135 |
+
"help": "Whether to use the authentication token for private datasets."
|
| 136 |
+
},
|
|
|
|
|
|
|
| 137 |
)
|
| 138 |
max_source_length: Optional[int] = field(
|
| 139 |
default=128,
|
|
|
|
| 142 |
"than this will be truncated, sequences shorter will be padded."
|
| 143 |
},
|
| 144 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
max_train_samples: Optional[int] = field(
|
| 146 |
default=None,
|
| 147 |
metadata={
|
|
|
|
| 156 |
"value if set."
|
| 157 |
},
|
| 158 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
preprocessing_num_workers: Optional[int] = field(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
default=None,
|
| 161 |
metadata={
|
| 162 |
+
"help": "The number of processes to use for the preprocessing. Not used in streaming mode."
|
| 163 |
},
|
| 164 |
)
|
| 165 |
overwrite_cache: bool = field(
|
| 166 |
default=False,
|
| 167 |
+
metadata={
|
| 168 |
+
"help": "Overwrite the cached training and evaluation sets. Not used in streaming mode."
|
| 169 |
+
},
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
def __post_init__(self):
|
| 173 |
+
if self.dataset_repo_or_path is None:
|
| 174 |
+
raise ValueError("Need a dataset repository or path.")
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
@dataclass
|
| 178 |
+
class TrainingArguments:
|
| 179 |
+
"""
|
| 180 |
+
Arguments pertaining to training parameters.
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
output_dir: str = field(
|
| 184 |
+
metadata={
|
| 185 |
+
"help": "The output directory where the model predictions and checkpoints will be written."
|
| 186 |
+
},
|
| 187 |
+
)
|
| 188 |
+
overwrite_output_dir: bool = field(
|
| 189 |
+
default=False,
|
| 190 |
+
metadata={
|
| 191 |
+
"help": (
|
| 192 |
+
"Overwrite the content of the output directory. "
|
| 193 |
+
"Use this to continue training if output_dir points to a checkpoint directory."
|
| 194 |
+
)
|
| 195 |
+
},
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
do_train: bool = field(default=False, metadata={"help": "Whether to run training."})
|
| 199 |
+
do_eval: bool = field(
|
| 200 |
+
default=False, metadata={"help": "Whether to run eval on the dev set."}
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
per_device_train_batch_size: int = field(
|
| 204 |
+
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."}
|
| 205 |
+
)
|
| 206 |
+
per_device_eval_batch_size: int = field(
|
| 207 |
+
default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."}
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
gradient_accumulation_steps: int = field(
|
| 211 |
+
default=1,
|
| 212 |
+
metadata={
|
| 213 |
+
"help": "Number of updates steps to accumulate before performing a backward/update pass."
|
| 214 |
+
},
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
learning_rate: float = field(
|
| 218 |
+
default=5e-5, metadata={"help": "The initial learning rate."}
|
| 219 |
+
)
|
| 220 |
+
adafactor: bool = field(
|
| 221 |
+
default=False,
|
| 222 |
+
metadata={"help": "Whether or not to replace AdamW by Adafactor."},
|
| 223 |
+
)
|
| 224 |
+
weight_decay: float = field(
|
| 225 |
+
default=None, metadata={"help": "Weight decay if we apply some."}
|
| 226 |
+
)
|
| 227 |
+
adam_beta1: float = field(
|
| 228 |
+
default=0.9, metadata={"help": "Beta1 for AdamW optimizer"}
|
| 229 |
+
)
|
| 230 |
+
adam_beta2: float = field(
|
| 231 |
+
default=0.999, metadata={"help": "Beta2 for AdamW optimizer"}
|
| 232 |
+
)
|
| 233 |
+
adam_epsilon: float = field(
|
| 234 |
+
default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."}
|
| 235 |
+
)
|
| 236 |
+
max_grad_norm: float = field(
|
| 237 |
+
default=1.0, metadata={"help": "Max gradient norm for Adafactor."}
|
| 238 |
+
)
|
| 239 |
+
use_decay: bool = field(
|
| 240 |
+
default=False,
|
| 241 |
+
metadata={"help": "Whether to use decay in the learning rate scheduler."},
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
num_train_epochs: float = field(
|
| 245 |
+
default=3.0, metadata={"help": "Total number of training epochs to perform."}
|
| 246 |
+
)
|
| 247 |
+
warmup_steps: int = field(
|
| 248 |
+
default=0, metadata={"help": "Linear warmup over warmup_steps."}
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
logging_steps: int = field(
|
| 252 |
+
default=40, metadata={"help": "Log every X updates steps."}
|
| 253 |
+
)
|
| 254 |
+
eval_steps: int = field(
|
| 255 |
+
default=400, metadata={"help": "Run an evaluation every X steps."}
|
| 256 |
)
|
| 257 |
+
save_steps: int = field(
|
| 258 |
+
default=4000, metadata={"help": "Save checkpoint every X updates steps."}
|
|
|
|
| 259 |
)
|
| 260 |
log_model: bool = field(
|
| 261 |
default=False,
|
| 262 |
+
metadata={"help": "Log model to wandb at `save_steps` frequency."},
|
| 263 |
)
|
| 264 |
+
|
| 265 |
+
seed_model: int = field(
|
| 266 |
+
default=42,
|
| 267 |
+
metadata={
|
| 268 |
+
"help": "Random seed for the model that will be set at the beginning of training."
|
| 269 |
+
},
|
| 270 |
+
)
|
| 271 |
+
# default seed of None ensures we don't repeat the same items if script was interrupted during an epoch
|
| 272 |
+
seed_dataset: int = field(
|
| 273 |
+
default=None,
|
| 274 |
metadata={
|
| 275 |
+
"help": "Random seed for the dataset that will be set at the beginning of training."
|
| 276 |
},
|
| 277 |
)
|
| 278 |
|
| 279 |
+
push_to_hub: bool = field(
|
| 280 |
+
default=False,
|
| 281 |
+
metadata={
|
| 282 |
+
"help": "Whether or not to upload the trained model to the model hub after training."
|
| 283 |
+
},
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
resume_from_wandb_checkpoint: Optional[str] = field(
|
| 287 |
+
default=None,
|
| 288 |
+
metadata={"help": "The reference to a wandb artifact for resuming training."},
|
| 289 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
|
| 292 |
class TrainState(train_state.TrainState):
|
| 293 |
dropout_rng: jnp.ndarray = None
|
| 294 |
+
epoch: int = 0
|
| 295 |
+
train_time: float = 0.0 # total time the model trained
|
| 296 |
+
train_samples: int = 0 # number of samples seen
|
| 297 |
|
| 298 |
def replicate(self):
|
| 299 |
return jax_utils.replicate(self).replace(
|
|
|
|
| 305 |
with (Path(artifact_dir) / "opt_state.msgpack").open("rb") as f:
|
| 306 |
new_opt_state = from_bytes(self.opt_state, f.read())
|
| 307 |
|
| 308 |
+
# restore other parameters
|
| 309 |
with (Path(artifact_dir) / "training_state.json").open("r") as f:
|
| 310 |
training_state = json.load(f)
|
|
|
|
| 311 |
|
| 312 |
# replace state
|
| 313 |
+
return self.replace(
|
| 314 |
+
opt_state=new_opt_state,
|
| 315 |
+
step=training_state["step"],
|
| 316 |
+
train_time=training_state["train_time"],
|
| 317 |
+
train_samples=training_state["train_samples"],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
)
|
| 319 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
|
| 321 |
def data_loader(
|
| 322 |
+
dataset: Dataset,
|
| 323 |
+
batch_size: int,
|
| 324 |
+
rng: jax.random.PRNGKey = None,
|
| 325 |
):
|
| 326 |
"""
|
| 327 |
Returns batches of size `batch_size` from truncated `dataset`, sharded over all local devices.
|
|
|
|
| 329 |
"""
|
| 330 |
steps_per_epoch = len(dataset) // batch_size
|
| 331 |
|
| 332 |
+
if rng is not None:
|
| 333 |
batch_idx = jax.random.permutation(rng, len(dataset))
|
| 334 |
else:
|
| 335 |
batch_idx = jnp.arange(len(dataset))
|
|
|
|
| 358 |
|
| 359 |
|
| 360 |
def create_learning_rate_fn(
|
|
|
|
|
|
|
|
|
|
| 361 |
num_warmup_steps: int,
|
| 362 |
learning_rate: float,
|
| 363 |
+
use_decay: bool,
|
| 364 |
+
num_train_steps: int = None, # used only with `use_decay`, typically train_size // batch_size * num_epochs
|
| 365 |
) -> Callable[[int], jnp.array]:
|
| 366 |
"""Returns a linear warmup, linear_decay learning rate function."""
|
| 367 |
+
if use_decay:
|
| 368 |
+
assert (
|
| 369 |
+
num_train_steps is not None
|
| 370 |
+
), "Learning rate with decay requires number of training steps"
|
| 371 |
warmup_fn = optax.linear_schedule(
|
| 372 |
init_value=0.0, end_value=learning_rate, transition_steps=num_warmup_steps
|
| 373 |
)
|
| 374 |
+
if not use_decay:
|
| 375 |
return warmup_fn
|
| 376 |
decay_fn = optax.linear_schedule(
|
| 377 |
init_value=learning_rate,
|
|
|
|
| 395 |
|
| 396 |
|
| 397 |
def main():
|
| 398 |
+
# See all possible arguments by passing the --help flag to this script.
|
|
|
|
|
|
|
|
|
|
| 399 |
parser = HfArgumentParser(
|
| 400 |
(ModelArguments, DataTrainingArguments, TrainingArguments)
|
| 401 |
)
|
|
|
|
| 420 |
)
|
| 421 |
|
| 422 |
# Make one log on every process with the configuration for debugging.
|
| 423 |
+
logging.basicConfig(
|
| 424 |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
| 425 |
datefmt="%m/%d/%Y %H:%M:%S",
|
| 426 |
+
level=logging.INFO,
|
| 427 |
)
|
| 428 |
# Setup logging, we only want one process per machine to log things on the screen.
|
| 429 |
+
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
| 430 |
if jax.process_index() == 0:
|
| 431 |
datasets.utils.logging.set_verbosity_warning()
|
| 432 |
transformers.utils.logging.set_verbosity_info()
|
|
|
|
| 437 |
# Set the verbosity to info of the Transformers logger (on main process only):
|
| 438 |
logger.info(f"Training/evaluation parameters {training_args}")
|
| 439 |
|
| 440 |
+
# Load dataset
|
| 441 |
+
if data_args.train_file is not None or data_args.validation_file is not None:
|
| 442 |
+
data_files = {
|
| 443 |
+
"train": data_args.train_file,
|
| 444 |
+
"validation": data_args.validation_file,
|
| 445 |
+
}
|
| 446 |
+
else:
|
| 447 |
+
data_files = None
|
| 448 |
dataset = load_dataset(
|
| 449 |
data_args.dataset_repo_or_path,
|
| 450 |
data_files=data_files,
|
| 451 |
streaming=data_args.streaming,
|
| 452 |
+
use_auth_token=data_args.use_auth_token,
|
| 453 |
)
|
| 454 |
|
| 455 |
# Set up wandb run
|
|
|
|
| 458 |
project="dalle-mini",
|
| 459 |
job_type="Seq2Seq",
|
| 460 |
config=parser.parse_args(),
|
|
|
|
| 461 |
)
|
| 462 |
|
| 463 |
+
if training_args.resume_from_wandb_checkpoint is not None:
|
| 464 |
+
artifact = wandb.run.use_artifact(training_args.resume_from_wandb_checkpoint)
|
| 465 |
artifact_dir = artifact.download()
|
| 466 |
+
|
| 467 |
+
# load model
|
| 468 |
model = CustomFlaxBartForConditionalGeneration.from_pretrained(artifact_dir)
|
| 469 |
|
| 470 |
# load tokenizer
|
| 471 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 472 |
artifact_dir,
|
| 473 |
+
use_fast=True,
|
| 474 |
)
|
| 475 |
|
| 476 |
else:
|
| 477 |
# Set up our new model config
|
| 478 |
+
# TODO: simplify with custom config class
|
| 479 |
config = BartConfig.from_pretrained(model_args.model_name_or_path)
|
| 480 |
+
config.image_vocab_size = model_args.image_vocab_size
|
| 481 |
+
config.image_length = model_args.image_length
|
| 482 |
+
# we append decoder bos to image vocab
|
| 483 |
+
config.decoder_start_token_id = config.image_vocab_size
|
| 484 |
+
# ensure we don't generate bos (in addition to decoder start token)
|
| 485 |
+
config.force_bos_token_to_be_generated = False
|
|
|
|
|
|
|
|
|
|
| 486 |
config.forced_bos_token_id = None # we don't need this token
|
| 487 |
config.forced_eos_token_id = None # we don't need this token
|
| 488 |
+
|
| 489 |
+
config.tie_word_embeddings = False
|
| 490 |
+
config.min_length = model_args.image_length + 1
|
| 491 |
+
config.max_length = model_args.image_length + 1
|
| 492 |
+
|
| 493 |
+
# below tokens need to be set to avoid error during generation (converted to jnp.array)
|
| 494 |
+
# they are not expected to be used and are set to unreachable token id
|
| 495 |
+
config.bos_token_id = config.image_vocab_size + 1
|
| 496 |
+
config.pos_token_id = config.image_vocab_size + 1
|
| 497 |
+
config.eos_token_id = config.image_vocab_size + 1
|
| 498 |
+
|
| 499 |
+
# save whether we normalize the text
|
| 500 |
+
config.normalize_text = model_args.normalize_text
|
| 501 |
|
| 502 |
# Create a custom model and initialize it randomly
|
| 503 |
model = CustomFlaxBartForConditionalGeneration(
|
| 504 |
+
config, seed=training_args.seed_model, dtype=getattr(jnp, model_args.dtype)
|
| 505 |
)
|
| 506 |
|
| 507 |
# Load tokenizer
|
| 508 |
+
if model_args.tokenizer_name is not None:
|
| 509 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 510 |
+
model_args.tokenizer_name, use_fast=True
|
| 511 |
+
)
|
| 512 |
+
else:
|
| 513 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 514 |
+
model_args.model_name_or_path,
|
| 515 |
+
use_fast=True,
|
| 516 |
+
)
|
| 517 |
|
| 518 |
print(f"TPUs: {jax.device_count()}")
|
| 519 |
assert jax.device_count() == 8, "TPUs in use, please check running processes"
|
| 520 |
|
|
|
|
|
|
|
| 521 |
# Preprocessing the datasets.
|
| 522 |
# We need to tokenize inputs and targets.
|
| 523 |
|
|
|
|
| 534 |
shifted_input_ids[:, 0] = decoder_start_token_id
|
| 535 |
return shifted_input_ids
|
| 536 |
|
| 537 |
+
text_normalizer = TextNormalizer() if model.config.normalize_text else None
|
| 538 |
|
| 539 |
def normalize_text(example):
|
| 540 |
example[text_column] = text_normalizer(example[text_column])
|
|
|
|
| 542 |
|
| 543 |
def preprocess_function(examples):
|
| 544 |
inputs = examples[text_column]
|
|
|
|
| 545 |
# Setting padding="max_length" as we need fixed length inputs for jitted functions
|
| 546 |
model_inputs = tokenizer(
|
| 547 |
inputs,
|
|
|
|
| 579 |
else train_dataset.select(range(data_args.max_train_samples))
|
| 580 |
)
|
| 581 |
if data_args.streaming:
|
| 582 |
+
train_dataset = train_dataset.shuffle(1000, training_args.seed_dataset)
|
| 583 |
+
else:
|
| 584 |
+
seed_dataset = (
|
| 585 |
+
training_args.seed_dataset
|
| 586 |
+
if training_args.seed_dataset is not None
|
| 587 |
+
else np.random.get_state()[1][0]
|
| 588 |
+
)
|
| 589 |
+
rng_dataset = jax.random.PRNGKey(seed_dataset)
|
| 590 |
+
if model.config.normalize_text:
|
| 591 |
train_dataset = (
|
| 592 |
train_dataset.map(normalize_text)
|
| 593 |
if data_args.streaming
|
|
|
|
| 624 |
if data_args.streaming
|
| 625 |
else eval_dataset.select(range(data_args.max_train_samples))
|
| 626 |
)
|
| 627 |
+
if model.config.normalize_text:
|
| 628 |
eval_dataset = (
|
| 629 |
eval_dataset.map(normalize_text)
|
| 630 |
if data_args.streaming
|
|
|
|
| 652 |
)
|
| 653 |
|
| 654 |
# Initialize our training
|
| 655 |
+
rng = jax.random.PRNGKey(training_args.seed_model)
|
| 656 |
rng, dropout_rng = jax.random.split(rng)
|
| 657 |
|
| 658 |
# Store some constant
|
|
|
|
| 662 |
)
|
| 663 |
batch_size_per_update = train_batch_size * training_args.gradient_accumulation_steps
|
| 664 |
eval_batch_size = int(training_args.per_device_eval_batch_size) * jax.device_count()
|
| 665 |
+
len_train_dataset, len_eval_dataset = None, None
|
| 666 |
if data_args.streaming:
|
| 667 |
+
# we don't know the length, let's just assume max_samples if defined
|
| 668 |
+
if data_args.max_train_samples is not None:
|
|
|
|
|
|
|
|
|
|
| 669 |
len_train_dataset = data_args.max_train_samples
|
| 670 |
+
if data_args.max_eval_samples is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 671 |
len_eval_dataset = data_args.max_eval_samples
|
| 672 |
else:
|
| 673 |
len_train_dataset = len(train_dataset)
|
| 674 |
len_eval_dataset = len(eval_dataset)
|
| 675 |
+
steps_per_epoch = (
|
| 676 |
+
len_train_dataset // train_batch_size if len_train_dataset is not None else None
|
| 677 |
+
)
|
| 678 |
+
num_train_steps = (
|
| 679 |
+
steps_per_epoch * num_epochs if steps_per_epoch is not None else None
|
| 680 |
+
)
|
| 681 |
|
| 682 |
# Create learning rate schedule
|
| 683 |
learning_rate_fn = create_learning_rate_fn(
|
|
|
|
|
|
|
|
|
|
| 684 |
training_args.warmup_steps,
|
| 685 |
training_args.learning_rate,
|
| 686 |
+
training_args.use_decay,
|
| 687 |
+
num_train_steps,
|
| 688 |
)
|
| 689 |
|
| 690 |
# We use Optax's "masking" functionality to not apply weight decay
|
|
|
|
| 692 |
# mask boolean with the same structure as the parameters.
|
| 693 |
# The mask is True for parameters that should be decayed.
|
| 694 |
# Note that this mask is specifically adapted for FlaxBart.
|
|
|
|
|
|
|
| 695 |
def decay_mask_fn(params):
|
| 696 |
flat_params = traverse_util.flatten_dict(params)
|
| 697 |
layer_norm_params = [
|
|
|
|
| 714 |
# For more details about the parameters please check https://github.com/deepmind/optax/blob/ed02befef9bf81cbbf236be3d2b0e032e9ed4a40/optax/_src/alias.py#L74
|
| 715 |
optimizer = optax.adafactor(
|
| 716 |
learning_rate=learning_rate_fn,
|
| 717 |
+
weight_decay_rate=training_args.weight_decay,
|
| 718 |
+
weight_decay_mask=decay_mask_fn,
|
| 719 |
+
clipping_threshold=training_args.max_grad_norm,
|
| 720 |
)
|
| 721 |
else:
|
| 722 |
optimizer = optax.adamw(
|
|
|
|
| 741 |
tx=optimizer,
|
| 742 |
dropout_rng=dropout_rng,
|
| 743 |
)
|
| 744 |
+
if training_args.resume_from_wandb_checkpoint is not None:
|
| 745 |
+
# restore optimizer state and other parameters
|
| 746 |
+
# we currently ignore partial epoch training: see https://github.com/borisdayma/dalle-mini/issues/105
|
| 747 |
state = state.restore_state(artifact_dir)
|
|
|
|
|
|
|
| 748 |
|
| 749 |
# label smoothed cross entropy
|
| 750 |
def loss_fn(logits, labels):
|
|
|
|
| 753 |
return loss
|
| 754 |
|
| 755 |
# Define gradient update step fn
|
| 756 |
+
def train_step(state, batch, delta_time):
|
| 757 |
dropout_rng, new_dropout_rng = jax.random.split(state.dropout_rng)
|
| 758 |
|
| 759 |
def compute_loss(params, batch):
|
|
|
|
| 767 |
grad_fn = jax.value_and_grad(compute_loss)
|
| 768 |
loss, grads = grad_fn(state.params, batch)
|
| 769 |
grads = jax.lax.pmean(grads, "batch")
|
| 770 |
+
state = state.apply_gradients(
|
| 771 |
+
grads=grads,
|
| 772 |
+
dropout_rng=new_dropout_rng,
|
| 773 |
+
train_time=state.train_time + delta_time,
|
| 774 |
+
train_samples=state.train_samples + train_batch_size,
|
| 775 |
+
)
|
| 776 |
|
| 777 |
metrics = {
|
| 778 |
"loss": loss,
|
| 779 |
"learning_rate": learning_rate_fn(state.step),
|
| 780 |
}
|
| 781 |
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
| 782 |
+
|
| 783 |
+
return state, metrics
|
| 784 |
|
| 785 |
# Define eval fn
|
| 786 |
def eval_step(params, batch):
|
|
|
|
| 797 |
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
| 798 |
p_eval_step = jax.pmap(eval_step, "batch")
|
| 799 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 800 |
logger.info("***** Running training *****")
|
| 801 |
logger.info(f" Num examples = {len_train_dataset}")
|
| 802 |
logger.info(f" Num Epochs = {num_epochs}")
|
|
|
|
| 806 |
logger.info(
|
| 807 |
f" Total train batch size (w. parallel, distributed & gradient accumulation) = {batch_size_per_update}"
|
| 808 |
)
|
| 809 |
+
epochs = tqdm(
|
| 810 |
+
range(state.epoch, num_epochs), desc=f"Epoch ... (1/{num_epochs})", position=0
|
| 811 |
+
)
|
|
|
|
| 812 |
|
| 813 |
# set default x-axis as 'train/step'
|
| 814 |
+
wandb_log({}, step=state.step)
|
| 815 |
wandb.define_metric("*", step_metric="train/step")
|
| 816 |
|
| 817 |
# add interesting config parameters
|
|
|
|
| 820 |
"len_train": len_train_dataset,
|
| 821 |
"len_eval": len_eval_dataset,
|
| 822 |
"batch_size_per_update": batch_size_per_update,
|
|
|
|
|
|
|
| 823 |
}
|
| 824 |
)
|
| 825 |
|
| 826 |
+
# replicate state on each device
|
| 827 |
+
state = state.replicate()
|
| 828 |
+
|
| 829 |
def run_evaluation():
|
| 830 |
# ======================== Evaluating ==============================
|
| 831 |
eval_metrics = []
|
|
|
|
| 833 |
if data_args.streaming:
|
| 834 |
eval_loader = data_loader_streaming(eval_dataset, eval_batch_size)
|
| 835 |
else:
|
| 836 |
+
eval_loader = data_loader(eval_dataset, eval_batch_size)
|
| 837 |
+
eval_steps = (
|
| 838 |
+
len_eval_dataset // eval_batch_size
|
| 839 |
+
if len_eval_dataset is not None
|
| 840 |
+
else None
|
| 841 |
+
)
|
| 842 |
for batch in tqdm(
|
| 843 |
eval_loader,
|
| 844 |
desc="Evaluating...",
|
|
|
|
| 864 |
|
| 865 |
return eval_metrics
|
| 866 |
|
| 867 |
+
def run_save_model(state, eval_metrics=None):
|
| 868 |
if jax.process_index() == 0:
|
| 869 |
+
params = jax.device_get(unreplicate(state.params))
|
|
|
|
| 870 |
# save model locally
|
| 871 |
model.save_pretrained(
|
| 872 |
training_args.output_dir,
|
|
|
|
| 877 |
tokenizer.save_pretrained(training_args.output_dir)
|
| 878 |
|
| 879 |
# save state
|
| 880 |
+
opt_state = unreplicate(state.opt_state)
|
|
|
|
| 881 |
with (Path(training_args.output_dir) / "opt_state.msgpack").open("wb") as f:
|
| 882 |
+
f.write(to_bytes(opt_state))
|
| 883 |
+
state_dict = {
|
| 884 |
+
k: jax.device_get(unreplicate(getattr(state, k))).item()
|
| 885 |
+
for k in ["step", "epoch", "train_time", "train_samples"]
|
| 886 |
+
}
|
| 887 |
with (Path(training_args.output_dir) / "training_state.json").open(
|
| 888 |
"w"
|
| 889 |
) as f:
|
| 890 |
+
json.dump(
|
| 891 |
+
state_dict,
|
| 892 |
+
f,
|
| 893 |
+
)
|
| 894 |
|
| 895 |
# save to W&B
|
| 896 |
+
if training_args.log_model:
|
| 897 |
# save some space
|
| 898 |
c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache()
|
| 899 |
+
c.cleanup(wandb.util.from_human_size("10GB"))
|
| 900 |
|
| 901 |
+
metadata = dict(state_dict)
|
| 902 |
if eval_metrics is not None:
|
| 903 |
+
metadata["eval"] = eval_metrics
|
| 904 |
artifact = wandb.Artifact(
|
| 905 |
name=f"model-{wandb.run.id}", type="bart_model", metadata=metadata
|
| 906 |
)
|
|
|
|
| 934 |
training_args.output_dir,
|
| 935 |
params=params,
|
| 936 |
push_to_hub=training_args.push_to_hub,
|
| 937 |
+
commit_message=f"Saving weights and logs at step {unreplicate(state.step)+1}",
|
| 938 |
temp_dir=True, # avoid issues with being in a repository
|
| 939 |
)
|
| 940 |
|
| 941 |
+
# init variables
|
| 942 |
+
last_time = time.perf_counter()
|
| 943 |
+
train_metric = None
|
| 944 |
+
|
| 945 |
for epoch in epochs:
|
| 946 |
+
state.replace(epoch=jax_utils.replicate(epoch))
|
| 947 |
# ======================== Training ================================
|
| 948 |
+
wandb_log({"train/epoch": epoch}, step=unreplicate(state.step))
|
|
|
|
| 949 |
|
| 950 |
# Generate an epoch by shuffling sampling indices from the train dataset
|
| 951 |
if data_args.streaming:
|
| 952 |
+
train_dataset.set_epoch(epoch) # shuffle dataset
|
| 953 |
train_loader = data_loader_streaming(train_dataset, train_batch_size)
|
| 954 |
else:
|
| 955 |
+
rng_dataset, input_rng = jax.random.split(rng_dataset)
|
| 956 |
+
train_loader = data_loader(train_dataset, train_batch_size, rng=input_rng)
|
|
|
|
|
|
|
| 957 |
# train
|
| 958 |
for batch in tqdm(
|
| 959 |
train_loader,
|
|
|
|
| 962 |
leave=False,
|
| 963 |
total=steps_per_epoch,
|
| 964 |
):
|
| 965 |
+
|
| 966 |
+
# calculate delta time (we have a lag of one step but it's ok)
|
| 967 |
+
new_time = time.perf_counter()
|
| 968 |
+
delta_time = new_time - last_time
|
| 969 |
+
last_time = new_time
|
| 970 |
+
|
| 971 |
+
# train step
|
| 972 |
+
state, train_metric = p_train_step(
|
| 973 |
+
state, batch, jax_utils.replicate(delta_time)
|
| 974 |
+
)
|
| 975 |
step = unreplicate(state.step)
|
| 976 |
|
| 977 |
+
if step % training_args.logging_steps == 0 and jax.process_index() == 0:
|
| 978 |
# log metrics
|
| 979 |
wandb_log(unreplicate(train_metric), step=step, prefix="train")
|
| 980 |
+
# log state parameters
|
| 981 |
+
state_dict = {
|
| 982 |
+
k.split("_")[-1]: unreplicate(getattr(state, k))
|
| 983 |
+
for k in ["epoch", "train_time", "train_samples"]
|
| 984 |
+
}
|
| 985 |
+
wandb_log(state_dict, step=step, prefix="train")
|
| 986 |
+
|
| 987 |
+
eval_metrics = None
|
| 988 |
if training_args.eval_steps and step % training_args.eval_steps == 0:
|
| 989 |
+
eval_metrics = run_evaluation()
|
| 990 |
|
| 991 |
+
if step % training_args.save_steps == 0:
|
| 992 |
+
run_save_model(state, eval_metrics)
|
| 993 |
|
| 994 |
# log final train metrics
|
| 995 |
+
if train_metric is not None:
|
| 996 |
+
train_metric = unreplicate(train_metric)
|
| 997 |
+
wandb_log(train_metric, step=step, prefix="train")
|
| 998 |
|
| 999 |
+
epochs.write(
|
| 1000 |
+
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metric['loss']}, Learning Rate: {train_metric['learning_rate']})"
|
| 1001 |
+
)
|
|
|
|
| 1002 |
|
| 1003 |
# Final evaluation
|
| 1004 |
eval_metrics = run_evaluation()
|
| 1005 |
|
| 1006 |
# save checkpoint after each epoch
|
| 1007 |
+
run_save_model(state, eval_metrics)
|
| 1008 |
|
| 1009 |
|
| 1010 |
if __name__ == "__main__":
|
setup.cfg
CHANGED
|
@@ -12,5 +12,7 @@ project_urls =
|
|
| 12 |
packages = find:
|
| 13 |
install_requires =
|
| 14 |
transformers
|
|
|
|
|
|
|
| 15 |
jax
|
| 16 |
flax
|
|
|
|
| 12 |
packages = find:
|
| 13 |
install_requires =
|
| 14 |
transformers
|
| 15 |
+
unidecode
|
| 16 |
+
ftfy
|
| 17 |
jax
|
| 18 |
flax
|