Spaces:
Runtime error
Runtime error
Fix memory leak
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from html import escape
|
2 |
import re
|
|
|
3 |
import streamlit as st
|
4 |
import pandas as pd, numpy as np
|
5 |
from transformers import CLIPProcessor, CLIPModel, FlavaModel, FlavaProcessor
|
@@ -43,7 +44,8 @@ source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
|
|
43 |
|
44 |
def compute_text_embeddings(list_of_strings, name):
|
45 |
inputs = processors[name](text=list_of_strings, return_tensors="pt", padding=True)
|
46 |
-
|
|
|
47 |
if "flava" in name:
|
48 |
result = result[:, 0, :]
|
49 |
result = result.detach().numpy()
|
|
|
1 |
from html import escape
|
2 |
import re
|
3 |
+
import torch
|
4 |
import streamlit as st
|
5 |
import pandas as pd, numpy as np
|
6 |
from transformers import CLIPProcessor, CLIPModel, FlavaModel, FlavaProcessor
|
|
|
44 |
|
45 |
def compute_text_embeddings(list_of_strings, name):
|
46 |
inputs = processors[name](text=list_of_strings, return_tensors="pt", padding=True)
|
47 |
+
with torch.no_grad():
|
48 |
+
result = models[name].get_text_features(**inputs)
|
49 |
if "flava" in name:
|
50 |
result = result[:, 0, :]
|
51 |
result = result.detach().numpy()
|