|
import gradio as gr |
|
import torch |
|
from diffusers import StableDiffusionPipeline,DiffusionPipeline |
|
|
|
from diffusion_webui.utils.model_list import stable_model_list |
|
from diffusion_webui.utils.scheduler_list import ( |
|
SCHEDULER_MAPPING, |
|
get_scheduler, |
|
) |
|
|
|
|
|
class StableDiffusionText2ImageGenerator: |
|
def __init__(self): |
|
self.pipe = None |
|
|
|
def load_model( |
|
self, |
|
stable_model_path, |
|
scheduler, |
|
): |
|
if self.pipe is None or self.pipe.model_name != stable_model_path or self.pipe.scheduler_name != scheduler: |
|
if stable_model_path == "stabilityai/stable-diffusion-xl-base-0.9": |
|
self.pipe = DiffusionPipeline.from_pretrained( |
|
stable_model_path, safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
else: |
|
self.pipe = StableDiffusionPipeline.from_pretrained( |
|
stable_model_path, safety_checker=None, torch_dtype=torch.float16 |
|
) |
|
|
|
self.pipe = get_scheduler(pipe=self.pipe, scheduler=scheduler) |
|
self.pipe.to("cuda") |
|
self.pipe.enable_xformers_memory_efficient_attention() |
|
self.pipe.model_name = stable_model_path |
|
self.pipe.scheduler_name = scheduler |
|
|
|
return self.pipe |
|
|
|
def generate_image( |
|
self, |
|
stable_model_path: str, |
|
prompt: str, |
|
negative_prompt: str, |
|
num_images_per_prompt: int, |
|
scheduler: str, |
|
guidance_scale: int, |
|
num_inference_step: int, |
|
height: int, |
|
width: int, |
|
seed_generator=0, |
|
): |
|
pipe = self.load_model( |
|
stable_model_path=stable_model_path, |
|
scheduler=scheduler, |
|
) |
|
if seed_generator == 0: |
|
random_seed = torch.randint(0, 1000000, (1,)) |
|
generator = torch.manual_seed(random_seed) |
|
else: |
|
generator = torch.manual_seed(seed_generator) |
|
|
|
images = pipe( |
|
prompt=prompt, |
|
height=height, |
|
width=width, |
|
negative_prompt=negative_prompt, |
|
num_images_per_prompt=num_images_per_prompt, |
|
num_inference_steps=num_inference_step, |
|
guidance_scale=guidance_scale, |
|
generator=generator, |
|
).images |
|
|
|
return images |
|
|
|
def app(): |
|
with gr.Blocks(): |
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_prompt = gr.Textbox( |
|
lines=1, |
|
placeholder="Prompt", |
|
show_label=False, |
|
) |
|
|
|
text2image_negative_prompt = gr.Textbox( |
|
lines=1, |
|
placeholder="Negative Prompt", |
|
show_label=False, |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_model_path = gr.Dropdown( |
|
choices=stable_model_list, |
|
value=stable_model_list[1], |
|
label="Text-Image Model Id", |
|
) |
|
|
|
text2image_guidance_scale = gr.Slider( |
|
minimum=0.1, |
|
maximum=15, |
|
step=0.1, |
|
value=7.5, |
|
label="Guidance Scale", |
|
) |
|
|
|
text2image_num_inference_step = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
label="Num Inference Step", |
|
) |
|
text2image_num_images_per_prompt = gr.Slider( |
|
minimum=1, |
|
maximum=4, |
|
step=1, |
|
value=1, |
|
label="Number Of Images", |
|
) |
|
with gr.Row(): |
|
with gr.Column(): |
|
text2image_scheduler = gr.Dropdown( |
|
choices=list(SCHEDULER_MAPPING.keys()), |
|
value=list(SCHEDULER_MAPPING.keys())[0], |
|
label="Scheduler", |
|
) |
|
|
|
text2image_height = gr.Slider( |
|
minimum=128, |
|
maximum=1280, |
|
step=32, |
|
value=512, |
|
label="Image Height", |
|
) |
|
|
|
text2image_width = gr.Slider( |
|
minimum=128, |
|
maximum=1280, |
|
step=32, |
|
value=1024, |
|
label="Image Width", |
|
) |
|
text2image_seed_generator = gr.Slider( |
|
label="Seed(0 for random)", |
|
minimum=0, |
|
maximum=1000000, |
|
value=0, |
|
) |
|
text2image_predict = gr.Button(value="Generator") |
|
|
|
with gr.Column(): |
|
output_image = gr.Gallery( |
|
label="Generated images", |
|
show_label=False, |
|
elem_id="gallery", |
|
).style(grid=(1, 2), height=200) |
|
|
|
text2image_predict.click( |
|
fn=StableDiffusionText2ImageGenerator().generate_image, |
|
inputs=[ |
|
text2image_model_path, |
|
text2image_prompt, |
|
text2image_negative_prompt, |
|
text2image_num_images_per_prompt, |
|
text2image_scheduler, |
|
text2image_guidance_scale, |
|
text2image_num_inference_step, |
|
text2image_height, |
|
text2image_width, |
|
text2image_seed_generator, |
|
], |
|
outputs=output_image, |
|
) |
|
|