Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,49 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
)
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
yield response
|
41 |
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
"""
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import faiss
|
3 |
+
import numpy as np
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
|
6 |
+
# Загружаем датасет с вопросами и ответами
|
7 |
+
train_df = pd.read_csv("data/ostap_train.csv")
|
8 |
+
questions = train_df["question"].tolist()
|
9 |
+
answers = train_df["answer"].tolist()
|
10 |
|
11 |
+
# Инициализируем эмбеддинг-модель
|
12 |
+
model_bge = SentenceTransformer("fitlemon/bge-m3-ru-ostap")
|
|
|
|
|
13 |
|
14 |
+
# Вычисляем эмбеддинги для всех вопросов
|
15 |
+
answer_embeddings = model_bge.encode(answers, convert_to_numpy=True)
|
16 |
|
17 |
+
# Создаём FAISS-индекс на базе вопросов, но в качестве метаданных нужно положить еще ответы
|
18 |
+
index = faiss.IndexIDMap(faiss.IndexFlatIP(answer_embeddings.shape[1]))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Добавляем вопросы в индекс
|
21 |
+
index.add_with_ids(answer_embeddings, np.arange(len(answers)))
|
|
|
|
|
|
|
22 |
|
|
|
23 |
|
24 |
+
import gradio as gr
|
25 |
+
import time
|
26 |
|
27 |
+
with gr.Blocks() as app:
|
28 |
+
chatbot = gr.Chatbot(type="messages")
|
29 |
+
msg = gr.Textbox(
|
30 |
+
label="Напиши свой вопрос Остапу Бендеру здесь...",
|
31 |
+
placeholder="Привет, Остап!",
|
32 |
+
)
|
33 |
+
clear = gr.ClearButton([msg, chatbot])
|
|
|
34 |
|
35 |
+
def respond(message, chat_history):
|
|
|
36 |
|
37 |
+
query_emb = model_bge.encode([message], convert_to_numpy=True)
|
38 |
|
39 |
+
_, idx = index.search(query_emb, 1)
|
40 |
+
bot_message = answers[idx[0][0]]
|
41 |
+
chat_history.append({"role": "user", "content": message})
|
42 |
+
chat_history.append({"role": "assistant", "content": bot_message})
|
43 |
+
time.sleep(2)
|
44 |
+
return "", chat_history
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
msg.submit(respond, [msg, chatbot], [msg, chatbot])
|
47 |
|
48 |
if __name__ == "__main__":
|
49 |
+
app.launch()
|