fitlemon commited on
Commit
f3de15f
·
verified ·
1 Parent(s): 2b83feb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -51
app.py CHANGED
@@ -1,64 +1,49 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import pandas as pd
2
+ import faiss
3
+ import numpy as np
4
+ from sentence_transformers import SentenceTransformer
5
+
6
+ # Загружаем датасет с вопросами и ответами
7
+ train_df = pd.read_csv("data/ostap_train.csv")
8
+ questions = train_df["question"].tolist()
9
+ answers = train_df["answer"].tolist()
10
 
11
+ # Инициализируем эмбеддинг-модель
12
+ model_bge = SentenceTransformer("fitlemon/bge-m3-ru-ostap")
 
 
13
 
14
+ # Вычисляем эмбеддинги для всех вопросов
15
+ answer_embeddings = model_bge.encode(answers, convert_to_numpy=True)
16
 
17
+ # Создаём FAISS-индекс на базе вопросов, но в качестве метаданных нужно положить еще ответы
18
+ index = faiss.IndexIDMap(faiss.IndexFlatIP(answer_embeddings.shape[1]))
 
 
 
 
 
 
 
19
 
20
+ # Добавляем вопросы в индекс
21
+ index.add_with_ids(answer_embeddings, np.arange(len(answers)))
 
 
 
22
 
 
23
 
24
+ import gradio as gr
25
+ import time
26
 
27
+ with gr.Blocks() as app:
28
+ chatbot = gr.Chatbot(type="messages")
29
+ msg = gr.Textbox(
30
+ label="Напиши свой вопрос Остапу Бендеру здесь...",
31
+ placeholder="Привет, Остап!",
32
+ )
33
+ clear = gr.ClearButton([msg, chatbot])
 
34
 
35
+ def respond(message, chat_history):
 
36
 
37
+ query_emb = model_bge.encode([message], convert_to_numpy=True)
38
 
39
+ _, idx = index.search(query_emb, 1)
40
+ bot_message = answers[idx[0][0]]
41
+ chat_history.append({"role": "user", "content": message})
42
+ chat_history.append({"role": "assistant", "content": bot_message})
43
+ time.sleep(2)
44
+ return "", chat_history
 
 
 
 
 
 
 
 
 
 
 
 
45
 
46
+ msg.submit(respond, [msg, chatbot], [msg, chatbot])
47
 
48
  if __name__ == "__main__":
49
+ app.launch()