Spaces:
Running
on
L4
Running
on
L4
| import gc | |
| import html | |
| import io | |
| import os | |
| import queue | |
| import wave | |
| from argparse import ArgumentParser | |
| from functools import partial | |
| from pathlib import Path | |
| import gradio as gr | |
| import librosa | |
| import numpy as np | |
| import pyrootutils | |
| import torch | |
| from loguru import logger | |
| from transformers import AutoTokenizer | |
| pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | |
| from fish_speech.i18n import i18n | |
| from fish_speech.text.chn_text_norm.text import Text as ChnNormedText | |
| from fish_speech.utils import autocast_exclude_mps, set_seed | |
| from tools.api import decode_vq_tokens, encode_reference | |
| from tools.file import AUDIO_EXTENSIONS, list_files | |
| from tools.llama.generate import ( | |
| GenerateRequest, | |
| GenerateResponse, | |
| WrappedGenerateResponse, | |
| launch_thread_safe_queue, | |
| ) | |
| from tools.vqgan.inference import load_model as load_decoder_model | |
| # Make einx happy | |
| os.environ["EINX_FILTER_TRACEBACK"] = "false" | |
| HEADER_MD = f"""# Fish Speech | |
| {i18n("A text-to-speech model based on VQ-GAN and Llama developed by [Fish Audio](https://fish.audio).")} | |
| {i18n("You can find the source code [here](https://github.com/fishaudio/fish-speech) and models [here](https://huggingface.co/fishaudio/fish-speech-1.4).")} | |
| {i18n("Related code and weights are released under CC BY-NC-SA 4.0 License.")} | |
| {i18n("We are not responsible for any misuse of the model, please consider your local laws and regulations before using it.")} | |
| """ | |
| TEXTBOX_PLACEHOLDER = i18n("Put your text here.") | |
| SPACE_IMPORTED = False | |
| def build_html_error_message(error): | |
| return f""" | |
| <div style="color: red; | |
| font-weight: bold;"> | |
| {html.escape(str(error))} | |
| </div> | |
| """ | |
| def inference( | |
| text, | |
| enable_reference_audio, | |
| reference_audio, | |
| reference_text, | |
| max_new_tokens, | |
| chunk_length, | |
| top_p, | |
| repetition_penalty, | |
| temperature, | |
| seed="0", | |
| streaming=False, | |
| ): | |
| if args.max_gradio_length > 0 and len(text) > args.max_gradio_length: | |
| return ( | |
| None, | |
| None, | |
| i18n("Text is too long, please keep it under {} characters.").format( | |
| args.max_gradio_length | |
| ), | |
| ) | |
| seed = int(seed) | |
| if seed != 0: | |
| set_seed(seed) | |
| logger.warning(f"set seed: {seed}") | |
| # Parse reference audio aka prompt | |
| prompt_tokens = encode_reference( | |
| decoder_model=decoder_model, | |
| reference_audio=reference_audio, | |
| enable_reference_audio=enable_reference_audio, | |
| ) | |
| # LLAMA Inference | |
| request = dict( | |
| device=decoder_model.device, | |
| max_new_tokens=max_new_tokens, | |
| text=text, | |
| top_p=top_p, | |
| repetition_penalty=repetition_penalty, | |
| temperature=temperature, | |
| compile=args.compile, | |
| iterative_prompt=chunk_length > 0, | |
| chunk_length=chunk_length, | |
| max_length=2048, | |
| prompt_tokens=prompt_tokens if enable_reference_audio else None, | |
| prompt_text=reference_text if enable_reference_audio else None, | |
| ) | |
| response_queue = queue.Queue() | |
| llama_queue.put( | |
| GenerateRequest( | |
| request=request, | |
| response_queue=response_queue, | |
| ) | |
| ) | |
| if streaming: | |
| yield wav_chunk_header(), None, None | |
| segments = [] | |
| while True: | |
| result: WrappedGenerateResponse = response_queue.get() | |
| if result.status == "error": | |
| yield None, None, build_html_error_message(result.response) | |
| break | |
| result: GenerateResponse = result.response | |
| if result.action == "next": | |
| break | |
| with autocast_exclude_mps( | |
| device_type=decoder_model.device.type, dtype=args.precision | |
| ): | |
| fake_audios = decode_vq_tokens( | |
| decoder_model=decoder_model, | |
| codes=result.codes, | |
| ) | |
| fake_audios = fake_audios.float().cpu().numpy() | |
| segments.append(fake_audios) | |
| if streaming: | |
| wav_header = wav_chunk_header() | |
| audio_data = (fake_audios * 32768).astype(np.int16).tobytes() | |
| yield wav_header + audio_data, None, None | |
| if len(segments) == 0: | |
| return ( | |
| None, | |
| None, | |
| build_html_error_message( | |
| i18n("No audio generated, please check the input text.") | |
| ), | |
| ) | |
| # No matter streaming or not, we need to return the final audio | |
| audio = np.concatenate(segments, axis=0) | |
| yield None, (decoder_model.spec_transform.sample_rate, audio), None | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| gc.collect() | |
| inference_stream = partial(inference, streaming=True) | |
| n_audios = 4 | |
| global_audio_list = [] | |
| global_error_list = [] | |
| def inference_wrapper( | |
| text, | |
| enable_reference_audio, | |
| reference_audio, | |
| reference_text, | |
| max_new_tokens, | |
| chunk_length, | |
| top_p, | |
| repetition_penalty, | |
| temperature, | |
| seed, | |
| batch_infer_num, | |
| ): | |
| audios = [] | |
| errors = [] | |
| for _ in range(batch_infer_num): | |
| result = inference( | |
| text, | |
| enable_reference_audio, | |
| reference_audio, | |
| reference_text, | |
| max_new_tokens, | |
| chunk_length, | |
| top_p, | |
| repetition_penalty, | |
| temperature, | |
| seed, | |
| ) | |
| _, audio_data, error_message = next(result) | |
| audios.append( | |
| gr.Audio(value=audio_data if audio_data else None, visible=True), | |
| ) | |
| errors.append( | |
| gr.HTML(value=error_message if error_message else None, visible=True), | |
| ) | |
| for _ in range(batch_infer_num, n_audios): | |
| audios.append( | |
| gr.Audio(value=None, visible=False), | |
| ) | |
| errors.append( | |
| gr.HTML(value=None, visible=False), | |
| ) | |
| return None, *audios, *errors | |
| def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1): | |
| buffer = io.BytesIO() | |
| with wave.open(buffer, "wb") as wav_file: | |
| wav_file.setnchannels(channels) | |
| wav_file.setsampwidth(bit_depth // 8) | |
| wav_file.setframerate(sample_rate) | |
| wav_header_bytes = buffer.getvalue() | |
| buffer.close() | |
| return wav_header_bytes | |
| def normalize_text(user_input, use_normalization): | |
| if use_normalization: | |
| return ChnNormedText(raw_text=user_input).normalize() | |
| else: | |
| return user_input | |
| def update_examples(): | |
| examples_dir = Path("references") | |
| examples_dir.mkdir(parents=True, exist_ok=True) | |
| example_audios = list_files(examples_dir, AUDIO_EXTENSIONS, recursive=True) | |
| return gr.Dropdown(choices=example_audios + [""]) | |
| def build_app(): | |
| with gr.Blocks(theme=gr.themes.Base()) as app: | |
| gr.Markdown(HEADER_MD) | |
| # Use light theme by default | |
| app.load( | |
| None, | |
| None, | |
| js="() => {const params = new URLSearchParams(window.location.search);if (!params.has('__theme')) {params.set('__theme', '%s');window.location.search = params.toString();}}" | |
| % args.theme, | |
| ) | |
| # Inference | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| text = gr.Textbox( | |
| label=i18n("Input Text"), placeholder=TEXTBOX_PLACEHOLDER, lines=10 | |
| ) | |
| refined_text = gr.Textbox( | |
| label=i18n("Realtime Transform Text"), | |
| placeholder=i18n( | |
| "Normalization Result Preview (Currently Only Chinese)" | |
| ), | |
| lines=5, | |
| interactive=False, | |
| ) | |
| with gr.Row(): | |
| if_refine_text = gr.Checkbox( | |
| label=i18n("Text Normalization"), | |
| value=False, | |
| scale=1, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Tab(label=i18n("Advanced Config")): | |
| with gr.Row(): | |
| chunk_length = gr.Slider( | |
| label=i18n("Iterative Prompt Length, 0 means off"), | |
| minimum=50, | |
| maximum=300, | |
| value=200, | |
| step=8, | |
| ) | |
| max_new_tokens = gr.Slider( | |
| label=i18n( | |
| "Maximum tokens per batch, 0 means no limit" | |
| ), | |
| minimum=0, | |
| maximum=2048, | |
| value=0, # 0 means no limit | |
| step=8, | |
| ) | |
| with gr.Row(): | |
| top_p = gr.Slider( | |
| label="Top-P", | |
| minimum=0.6, | |
| maximum=0.9, | |
| value=0.7, | |
| step=0.01, | |
| ) | |
| repetition_penalty = gr.Slider( | |
| label=i18n("Repetition Penalty"), | |
| minimum=1, | |
| maximum=1.5, | |
| value=1.2, | |
| step=0.01, | |
| ) | |
| with gr.Row(): | |
| temperature = gr.Slider( | |
| label="Temperature", | |
| minimum=0.6, | |
| maximum=0.9, | |
| value=0.7, | |
| step=0.01, | |
| ) | |
| seed = gr.Textbox( | |
| label="Seed", | |
| info="0 means randomized inference, otherwise deterministic", | |
| placeholder="any 32-bit-integer", | |
| value="0", | |
| ) | |
| with gr.Tab(label=i18n("Reference Audio")): | |
| with gr.Row(): | |
| gr.Markdown( | |
| i18n( | |
| "5 to 10 seconds of reference audio, useful for specifying speaker." | |
| ) | |
| ) | |
| with gr.Row(): | |
| enable_reference_audio = gr.Checkbox( | |
| label=i18n("Enable Reference Audio"), | |
| ) | |
| with gr.Row(): | |
| example_audio_dropdown = gr.Dropdown( | |
| label=i18n("Select Example Audio"), | |
| choices=[""], | |
| value="", | |
| interactive=True, | |
| allow_custom_value=True, | |
| ) | |
| with gr.Row(): | |
| reference_audio = gr.Audio( | |
| label=i18n("Reference Audio"), | |
| type="filepath", | |
| ) | |
| with gr.Row(): | |
| reference_text = gr.Textbox( | |
| label=i18n("Reference Text"), | |
| lines=1, | |
| placeholder="在一无所知中,梦里的一天结束了,一个新的「轮回」便会开始。", | |
| value="", | |
| ) | |
| with gr.Tab(label=i18n("Batch Inference")): | |
| with gr.Row(): | |
| batch_infer_num = gr.Slider( | |
| label="Batch infer nums", | |
| minimum=1, | |
| maximum=n_audios, | |
| step=1, | |
| value=1, | |
| ) | |
| with gr.Column(scale=3): | |
| for _ in range(n_audios): | |
| with gr.Row(): | |
| error = gr.HTML( | |
| label=i18n("Error Message"), | |
| visible=True if _ == 0 else False, | |
| ) | |
| global_error_list.append(error) | |
| with gr.Row(): | |
| audio = gr.Audio( | |
| label=i18n("Generated Audio"), | |
| type="numpy", | |
| interactive=False, | |
| visible=True if _ == 0 else False, | |
| ) | |
| global_audio_list.append(audio) | |
| with gr.Row(): | |
| stream_audio = gr.Audio( | |
| label=i18n("Streaming Audio"), | |
| streaming=True, | |
| autoplay=True, | |
| interactive=False, | |
| show_download_button=True, | |
| ) | |
| with gr.Row(): | |
| with gr.Column(scale=3): | |
| generate = gr.Button( | |
| value="\U0001F3A7 " + i18n("Generate"), variant="primary" | |
| ) | |
| generate_stream = gr.Button( | |
| value="\U0001F3A7 " + i18n("Streaming Generate"), | |
| variant="primary", | |
| ) | |
| text.input( | |
| fn=normalize_text, inputs=[text, if_refine_text], outputs=[refined_text] | |
| ) | |
| def select_example_audio(audio_path): | |
| audio_path = Path(audio_path) | |
| if audio_path.is_file(): | |
| lab_file = Path(audio_path.with_suffix(".lab")) | |
| if lab_file.exists(): | |
| lab_content = lab_file.read_text(encoding="utf-8").strip() | |
| else: | |
| lab_content = "" | |
| return str(audio_path), lab_content, True | |
| return None, "", False | |
| # Connect the dropdown to update reference audio and text | |
| example_audio_dropdown.change( | |
| fn=update_examples, inputs=[], outputs=[example_audio_dropdown] | |
| ).then( | |
| fn=select_example_audio, | |
| inputs=[example_audio_dropdown], | |
| outputs=[reference_audio, reference_text, enable_reference_audio], | |
| ) | |
| # # Submit | |
| generate.click( | |
| inference_wrapper, | |
| [ | |
| refined_text, | |
| enable_reference_audio, | |
| reference_audio, | |
| reference_text, | |
| max_new_tokens, | |
| chunk_length, | |
| top_p, | |
| repetition_penalty, | |
| temperature, | |
| seed, | |
| batch_infer_num, | |
| ], | |
| [stream_audio, *global_audio_list, *global_error_list], | |
| concurrency_limit=1, | |
| ) | |
| generate_stream.click( | |
| inference_stream, | |
| [ | |
| refined_text, | |
| enable_reference_audio, | |
| reference_audio, | |
| reference_text, | |
| max_new_tokens, | |
| chunk_length, | |
| top_p, | |
| repetition_penalty, | |
| temperature, | |
| seed, | |
| ], | |
| [stream_audio, global_audio_list[0], global_error_list[0]], | |
| concurrency_limit=1, | |
| ) | |
| return app | |
| def parse_args(): | |
| parser = ArgumentParser() | |
| parser.add_argument( | |
| "--llama-checkpoint-path", | |
| type=Path, | |
| default="checkpoints/fish-speech-1.4", | |
| ) | |
| parser.add_argument( | |
| "--decoder-checkpoint-path", | |
| type=Path, | |
| default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", | |
| ) | |
| parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq") | |
| parser.add_argument("--device", type=str, default="cuda") | |
| parser.add_argument("--half", action="store_true") | |
| parser.add_argument("--compile", action="store_true") | |
| parser.add_argument("--max-gradio-length", type=int, default=0) | |
| parser.add_argument("--theme", type=str, default="light") | |
| return parser.parse_args() | |
| if __name__ == "__main__": | |
| args = parse_args() | |
| args.precision = torch.half if args.half else torch.bfloat16 | |
| # Check if CUDA is available | |
| if not torch.cuda.is_available(): | |
| logger.info("CUDA is not available, running on CPU.") | |
| args.device = "cpu" | |
| logger.info("Loading Llama model...") | |
| llama_queue = launch_thread_safe_queue( | |
| checkpoint_path=args.llama_checkpoint_path, | |
| device=args.device, | |
| precision=args.precision, | |
| compile=args.compile, | |
| ) | |
| logger.info("Llama model loaded, loading VQ-GAN model...") | |
| decoder_model = load_decoder_model( | |
| config_name=args.decoder_config_name, | |
| checkpoint_path=args.decoder_checkpoint_path, | |
| device=args.device, | |
| ) | |
| logger.info("Decoder model loaded, warming up...") | |
| # Dry run to check if the model is loaded correctly and avoid the first-time latency | |
| list( | |
| inference( | |
| text="Hello, world!", | |
| enable_reference_audio=False, | |
| reference_audio=None, | |
| reference_text="", | |
| max_new_tokens=0, | |
| chunk_length=200, | |
| top_p=0.7, | |
| repetition_penalty=1.2, | |
| temperature=0.7, | |
| ) | |
| ) | |
| logger.info("Warming up done, launching the web UI...") | |
| app = build_app() | |
| app.launch(show_api=True) | |