Spaces:
Running
on
L4
Running
on
L4
| import base64 | |
| import io | |
| import json | |
| import queue | |
| import random | |
| import sys | |
| import traceback | |
| import wave | |
| from argparse import ArgumentParser | |
| from http import HTTPStatus | |
| from pathlib import Path | |
| from typing import Annotated, Any, Literal, Optional | |
| import numpy as np | |
| import ormsgpack | |
| import pyrootutils | |
| import soundfile as sf | |
| import torch | |
| import torchaudio | |
| from baize.datastructures import ContentType | |
| from kui.asgi import ( | |
| Body, | |
| FactoryClass, | |
| HTTPException, | |
| HttpRequest, | |
| HttpView, | |
| JSONResponse, | |
| Kui, | |
| OpenAPI, | |
| StreamResponse, | |
| ) | |
| from kui.asgi.routing import MultimethodRoutes | |
| from loguru import logger | |
| from pydantic import BaseModel, Field, conint | |
| pyrootutils.setup_root(__file__, indicator=".project-root", pythonpath=True) | |
| # from fish_speech.models.vqgan.lit_module import VQGAN | |
| from fish_speech.models.vqgan.modules.firefly import FireflyArchitecture | |
| from fish_speech.text.chn_text_norm.text import Text as ChnNormedText | |
| from fish_speech.utils import autocast_exclude_mps | |
| from tools.commons import ServeReferenceAudio, ServeTTSRequest | |
| from tools.file import AUDIO_EXTENSIONS, audio_to_bytes, list_files, read_ref_text | |
| from tools.llama.generate import ( | |
| GenerateRequest, | |
| GenerateResponse, | |
| WrappedGenerateResponse, | |
| launch_thread_safe_queue, | |
| ) | |
| from tools.vqgan.inference import load_model as load_decoder_model | |
| def wav_chunk_header(sample_rate=44100, bit_depth=16, channels=1): | |
| buffer = io.BytesIO() | |
| with wave.open(buffer, "wb") as wav_file: | |
| wav_file.setnchannels(channels) | |
| wav_file.setsampwidth(bit_depth // 8) | |
| wav_file.setframerate(sample_rate) | |
| wav_header_bytes = buffer.getvalue() | |
| buffer.close() | |
| return wav_header_bytes | |
| # Define utils for web server | |
| async def http_execption_handler(exc: HTTPException): | |
| return JSONResponse( | |
| dict( | |
| statusCode=exc.status_code, | |
| message=exc.content, | |
| error=HTTPStatus(exc.status_code).phrase, | |
| ), | |
| exc.status_code, | |
| exc.headers, | |
| ) | |
| async def other_exception_handler(exc: "Exception"): | |
| traceback.print_exc() | |
| status = HTTPStatus.INTERNAL_SERVER_ERROR | |
| return JSONResponse( | |
| dict(statusCode=status, message=str(exc), error=status.phrase), | |
| status, | |
| ) | |
| def load_audio(reference_audio, sr): | |
| if len(reference_audio) > 255 or not Path(reference_audio).exists(): | |
| audio_data = reference_audio | |
| reference_audio = io.BytesIO(audio_data) | |
| waveform, original_sr = torchaudio.load( | |
| reference_audio, backend="soundfile" if sys.platform == "linux" else "soundfile" | |
| ) | |
| if waveform.shape[0] > 1: | |
| waveform = torch.mean(waveform, dim=0, keepdim=True) | |
| if original_sr != sr: | |
| resampler = torchaudio.transforms.Resample(orig_freq=original_sr, new_freq=sr) | |
| waveform = resampler(waveform) | |
| audio = waveform.squeeze().numpy() | |
| return audio | |
| def encode_reference(*, decoder_model, reference_audio, enable_reference_audio): | |
| if enable_reference_audio and reference_audio is not None: | |
| # Load audios, and prepare basic info here | |
| reference_audio_content = load_audio( | |
| reference_audio, decoder_model.spec_transform.sample_rate | |
| ) | |
| audios = torch.from_numpy(reference_audio_content).to(decoder_model.device)[ | |
| None, None, : | |
| ] | |
| audio_lengths = torch.tensor( | |
| [audios.shape[2]], device=decoder_model.device, dtype=torch.long | |
| ) | |
| logger.info( | |
| f"Loaded audio with {audios.shape[2] / decoder_model.spec_transform.sample_rate:.2f} seconds" | |
| ) | |
| # VQ Encoder | |
| if isinstance(decoder_model, FireflyArchitecture): | |
| prompt_tokens = decoder_model.encode(audios, audio_lengths)[0][0] | |
| logger.info(f"Encoded prompt: {prompt_tokens.shape}") | |
| else: | |
| prompt_tokens = None | |
| logger.info("No reference audio provided") | |
| return prompt_tokens | |
| def decode_vq_tokens( | |
| *, | |
| decoder_model, | |
| codes, | |
| ): | |
| feature_lengths = torch.tensor([codes.shape[1]], device=decoder_model.device) | |
| logger.info(f"VQ features: {codes.shape}") | |
| if isinstance(decoder_model, FireflyArchitecture): | |
| # VQGAN Inference | |
| return decoder_model.decode( | |
| indices=codes[None], | |
| feature_lengths=feature_lengths, | |
| )[0].squeeze() | |
| raise ValueError(f"Unknown model type: {type(decoder_model)}") | |
| routes = MultimethodRoutes(base_class=HttpView) | |
| def get_content_type(audio_format): | |
| if audio_format == "wav": | |
| return "audio/wav" | |
| elif audio_format == "flac": | |
| return "audio/flac" | |
| elif audio_format == "mp3": | |
| return "audio/mpeg" | |
| else: | |
| return "application/octet-stream" | |
| def inference(req: ServeTTSRequest): | |
| idstr: str | None = req.reference_id | |
| if idstr is not None: | |
| ref_folder = Path("references") / idstr | |
| ref_folder.mkdir(parents=True, exist_ok=True) | |
| ref_audios = list_files( | |
| ref_folder, AUDIO_EXTENSIONS, recursive=True, sort=False | |
| ) | |
| prompt_tokens = [ | |
| encode_reference( | |
| decoder_model=decoder_model, | |
| reference_audio=audio_to_bytes(str(ref_audio)), | |
| enable_reference_audio=True, | |
| ) | |
| for ref_audio in ref_audios | |
| ] | |
| prompt_texts = [ | |
| read_ref_text(str(ref_audio.with_suffix(".lab"))) | |
| for ref_audio in ref_audios | |
| ] | |
| else: | |
| # Parse reference audio aka prompt | |
| refs = req.references | |
| if refs is None: | |
| refs = [] | |
| prompt_tokens = [ | |
| encode_reference( | |
| decoder_model=decoder_model, | |
| reference_audio=ref.audio, | |
| enable_reference_audio=True, | |
| ) | |
| for ref in refs | |
| ] | |
| prompt_texts = [ref.text for ref in refs] | |
| # LLAMA Inference | |
| request = dict( | |
| device=decoder_model.device, | |
| max_new_tokens=req.max_new_tokens, | |
| text=( | |
| req.text | |
| if not req.normalize | |
| else ChnNormedText(raw_text=req.text).normalize() | |
| ), | |
| top_p=req.top_p, | |
| repetition_penalty=req.repetition_penalty, | |
| temperature=req.temperature, | |
| compile=args.compile, | |
| iterative_prompt=req.chunk_length > 0, | |
| chunk_length=req.chunk_length, | |
| max_length=2048, | |
| prompt_tokens=prompt_tokens, | |
| prompt_text=prompt_texts, | |
| ) | |
| response_queue = queue.Queue() | |
| llama_queue.put( | |
| GenerateRequest( | |
| request=request, | |
| response_queue=response_queue, | |
| ) | |
| ) | |
| if req.streaming: | |
| yield wav_chunk_header() | |
| segments = [] | |
| while True: | |
| result: WrappedGenerateResponse = response_queue.get() | |
| if result.status == "error": | |
| raise result.response | |
| break | |
| result: GenerateResponse = result.response | |
| if result.action == "next": | |
| break | |
| with autocast_exclude_mps( | |
| device_type=decoder_model.device.type, dtype=args.precision | |
| ): | |
| fake_audios = decode_vq_tokens( | |
| decoder_model=decoder_model, | |
| codes=result.codes, | |
| ) | |
| fake_audios = fake_audios.float().cpu().numpy() | |
| if req.streaming: | |
| yield (fake_audios * 32768).astype(np.int16).tobytes() | |
| else: | |
| segments.append(fake_audios) | |
| if req.streaming: | |
| return | |
| if len(segments) == 0: | |
| raise HTTPException( | |
| HTTPStatus.INTERNAL_SERVER_ERROR, | |
| content="No audio generated, please check the input text.", | |
| ) | |
| fake_audios = np.concatenate(segments, axis=0) | |
| yield fake_audios | |
| async def inference_async(req: ServeTTSRequest): | |
| for chunk in inference(req): | |
| yield chunk | |
| async def buffer_to_async_generator(buffer): | |
| yield buffer | |
| async def api_invoke_model( | |
| req: Annotated[ServeTTSRequest, Body(exclusive=True)], | |
| ): | |
| """ | |
| Invoke model and generate audio | |
| """ | |
| if args.max_text_length > 0 and len(req.text) > args.max_text_length: | |
| raise HTTPException( | |
| HTTPStatus.BAD_REQUEST, | |
| content=f"Text is too long, max length is {args.max_text_length}", | |
| ) | |
| if req.streaming and req.format != "wav": | |
| raise HTTPException( | |
| HTTPStatus.BAD_REQUEST, | |
| content="Streaming only supports WAV format", | |
| ) | |
| if req.streaming: | |
| return StreamResponse( | |
| iterable=inference_async(req), | |
| headers={ | |
| "Content-Disposition": f"attachment; filename=audio.{req.format}", | |
| }, | |
| content_type=get_content_type(req.format), | |
| ) | |
| else: | |
| fake_audios = next(inference(req)) | |
| buffer = io.BytesIO() | |
| sf.write( | |
| buffer, | |
| fake_audios, | |
| decoder_model.spec_transform.sample_rate, | |
| format=req.format, | |
| ) | |
| return StreamResponse( | |
| iterable=buffer_to_async_generator(buffer.getvalue()), | |
| headers={ | |
| "Content-Disposition": f"attachment; filename=audio.{req.format}", | |
| }, | |
| content_type=get_content_type(req.format), | |
| ) | |
| async def api_health(): | |
| """ | |
| Health check | |
| """ | |
| return JSONResponse({"status": "ok"}) | |
| def parse_args(): | |
| parser = ArgumentParser() | |
| parser.add_argument( | |
| "--llama-checkpoint-path", | |
| type=str, | |
| default="checkpoints/fish-speech-1.4", | |
| ) | |
| parser.add_argument( | |
| "--decoder-checkpoint-path", | |
| type=str, | |
| default="checkpoints/fish-speech-1.4/firefly-gan-vq-fsq-8x1024-21hz-generator.pth", | |
| ) | |
| parser.add_argument("--decoder-config-name", type=str, default="firefly_gan_vq") | |
| parser.add_argument("--device", type=str, default="cuda") | |
| parser.add_argument("--half", action="store_true") | |
| parser.add_argument("--compile", action="store_true") | |
| parser.add_argument("--max-text-length", type=int, default=0) | |
| parser.add_argument("--listen", type=str, default="127.0.0.1:8080") | |
| parser.add_argument("--workers", type=int, default=1) | |
| parser.add_argument("--use-auto-rerank", type=bool, default=True) | |
| return parser.parse_args() | |
| # Define Kui app | |
| openapi = OpenAPI( | |
| { | |
| "title": "Fish Speech API", | |
| }, | |
| ).routes | |
| class MsgPackRequest(HttpRequest): | |
| async def data(self) -> Annotated[Any, ContentType("application/msgpack")]: | |
| if self.content_type == "application/msgpack": | |
| return ormsgpack.unpackb(await self.body) | |
| raise HTTPException( | |
| HTTPStatus.UNSUPPORTED_MEDIA_TYPE, | |
| headers={"Accept": "application/msgpack"}, | |
| ) | |
| app = Kui( | |
| routes=routes + openapi[1:], # Remove the default route | |
| exception_handlers={ | |
| HTTPException: http_execption_handler, | |
| Exception: other_exception_handler, | |
| }, | |
| factory_class=FactoryClass(http=MsgPackRequest), | |
| cors_config={}, | |
| ) | |
| if __name__ == "__main__": | |
| import uvicorn | |
| args = parse_args() | |
| args.precision = torch.half if args.half else torch.bfloat16 | |
| logger.info("Loading Llama model...") | |
| llama_queue = launch_thread_safe_queue( | |
| checkpoint_path=args.llama_checkpoint_path, | |
| device=args.device, | |
| precision=args.precision, | |
| compile=args.compile, | |
| ) | |
| logger.info("Llama model loaded, loading VQ-GAN model...") | |
| decoder_model = load_decoder_model( | |
| config_name=args.decoder_config_name, | |
| checkpoint_path=args.decoder_checkpoint_path, | |
| device=args.device, | |
| ) | |
| logger.info("VQ-GAN model loaded, warming up...") | |
| # Dry run to check if the model is loaded correctly and avoid the first-time latency | |
| list( | |
| inference( | |
| ServeTTSRequest( | |
| text="Hello world.", | |
| references=[], | |
| reference_id=None, | |
| max_new_tokens=0, | |
| top_p=0.7, | |
| repetition_penalty=1.2, | |
| temperature=0.7, | |
| emotion=None, | |
| format="wav", | |
| ) | |
| ) | |
| ) | |
| logger.info(f"Warming up done, starting server at http://{args.listen}") | |
| host, port = args.listen.split(":") | |
| uvicorn.run(app, host=host, port=int(port), workers=args.workers, log_level="info") | |