firsk commited on
Commit
46a24bb
ยท
1 Parent(s): 6632c9c

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +224 -0
app.py ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # flake8: noqa: E402
2
+
3
+ import sys, os
4
+ import logging
5
+
6
+ logging.getLogger("numba").setLevel(logging.WARNING)
7
+ logging.getLogger("markdown_it").setLevel(logging.WARNING)
8
+ logging.getLogger("urllib3").setLevel(logging.WARNING)
9
+ logging.getLogger("matplotlib").setLevel(logging.WARNING)
10
+
11
+ logging.basicConfig(
12
+ level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
13
+ )
14
+
15
+ logger = logging.getLogger(__name__)
16
+
17
+ import torch
18
+ import argparse
19
+ import commons
20
+ import utils
21
+ from models import SynthesizerTrn
22
+ from text.symbols import symbols
23
+ from text import cleaned_text_to_sequence, get_bert
24
+ from text.cleaner import clean_text
25
+ import gradio as gr
26
+ import webbrowser
27
+ import numpy as np
28
+
29
+ net_g = None
30
+
31
+ if sys.platform == "darwin" and torch.backends.mps.is_available():
32
+ device = "mps"
33
+ os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
34
+ else:
35
+ device = "cuda"
36
+
37
+
38
+ def get_text(text, language_str, hps):
39
+ norm_text, phone, tone, word2ph = clean_text(text, language_str)
40
+ phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
41
+
42
+ if hps.data.add_blank:
43
+ phone = commons.intersperse(phone, 0)
44
+ tone = commons.intersperse(tone, 0)
45
+ language = commons.intersperse(language, 0)
46
+ for i in range(len(word2ph)):
47
+ word2ph[i] = word2ph[i] * 2
48
+ word2ph[0] += 1
49
+ bert = get_bert(norm_text, word2ph, language_str, device)
50
+ del word2ph
51
+ assert bert.shape[-1] == len(phone), phone
52
+
53
+ if language_str == "ZH":
54
+ bert = bert
55
+ ja_bert = torch.zeros(768, len(phone))
56
+ elif language_str == "JP":
57
+ ja_bert = bert
58
+ bert = torch.zeros(1024, len(phone))
59
+ else:
60
+ bert = torch.zeros(1024, len(phone))
61
+ ja_bert = torch.zeros(768, len(phone))
62
+
63
+ assert bert.shape[-1] == len(
64
+ phone
65
+ ), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
66
+
67
+ phone = torch.LongTensor(phone)
68
+ tone = torch.LongTensor(tone)
69
+ language = torch.LongTensor(language)
70
+ return bert, ja_bert, phone, tone, language
71
+
72
+
73
+ def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
74
+ global net_g
75
+ bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
76
+ with torch.no_grad():
77
+ x_tst = phones.to(device).unsqueeze(0)
78
+ tones = tones.to(device).unsqueeze(0)
79
+ lang_ids = lang_ids.to(device).unsqueeze(0)
80
+ bert = bert.to(device).unsqueeze(0)
81
+ ja_bert = ja_bert.to(device).unsqueeze(0)
82
+ x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
83
+ del phones
84
+ speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
85
+ audio = (
86
+ net_g.infer(
87
+ x_tst,
88
+ x_tst_lengths,
89
+ speakers,
90
+ tones,
91
+ lang_ids,
92
+ bert,
93
+ ja_bert,
94
+ sdp_ratio=sdp_ratio,
95
+ noise_scale=noise_scale,
96
+ noise_scale_w=noise_scale_w,
97
+ length_scale=length_scale,
98
+ )[0][0, 0]
99
+ .data.cpu()
100
+ .float()
101
+ .numpy()
102
+ )
103
+ del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
104
+ torch.cuda.empty_cache()
105
+ return audio
106
+
107
+
108
+ def tts_fn(
109
+ text, speaker, sdp_ratio, noise_scale, noise_scale_w, length_scale, language
110
+ ):
111
+ slices = text.split("|")
112
+ audio_list = []
113
+ with torch.no_grad():
114
+ for slice in slices:
115
+ audio = infer(
116
+ slice,
117
+ sdp_ratio=sdp_ratio,
118
+ noise_scale=noise_scale,
119
+ noise_scale_w=noise_scale_w,
120
+ length_scale=length_scale,
121
+ sid=speaker,
122
+ language=language,
123
+ )
124
+ audio_list.append(audio)
125
+ silence = np.zeros(hps.data.sampling_rate) # ็”Ÿๆˆ1็ง’็š„้™้Ÿณ
126
+ audio_list.append(silence) # ๅฐ†้™้ŸณๆทปๅŠ ๅˆฐๅˆ—่กจไธญ
127
+ audio_concat = np.concatenate(audio_list)
128
+ return "Success", (hps.data.sampling_rate, audio_concat)
129
+
130
+
131
+ if __name__ == "__main__":
132
+ parser = argparse.ArgumentParser()
133
+ parser.add_argument(
134
+ "-m", "--model", default="./logs/as/G_8000.pth", help="path of your model"
135
+ )
136
+ parser.add_argument(
137
+ "-c",
138
+ "--config",
139
+ default="./configs/config.json",
140
+ help="path of your config file",
141
+ )
142
+ parser.add_argument(
143
+ "--share", default=False, help="make link public", action="store_true"
144
+ )
145
+ parser.add_argument(
146
+ "-d", "--debug", action="store_true", help="enable DEBUG-LEVEL log"
147
+ )
148
+
149
+ args = parser.parse_args()
150
+ if args.debug:
151
+ logger.info("Enable DEBUG-LEVEL log")
152
+ logging.basicConfig(level=logging.DEBUG)
153
+ hps = utils.get_hparams_from_file(args.config)
154
+
155
+ device = (
156
+ "cuda:0"
157
+ if torch.cuda.is_available()
158
+ else (
159
+ "mps"
160
+ if sys.platform == "darwin" and torch.backends.mps.is_available()
161
+ else "cpu"
162
+ )
163
+ )
164
+ net_g = SynthesizerTrn(
165
+ len(symbols),
166
+ hps.data.filter_length // 2 + 1,
167
+ hps.train.segment_size // hps.data.hop_length,
168
+ n_speakers=hps.data.n_speakers,
169
+ **hps.model,
170
+ ).to(device)
171
+ _ = net_g.eval()
172
+
173
+ _ = utils.load_checkpoint(args.model, net_g, None, skip_optimizer=True)
174
+
175
+ speaker_ids = hps.data.spk2id
176
+ speakers = list(speaker_ids.keys())
177
+ languages = ["ZH", "JP"]
178
+ with gr.Blocks() as app:
179
+ with gr.Row():
180
+ with gr.Column():
181
+ text = gr.TextArea(
182
+ label="Text",
183
+ placeholder="Input Text Here",
184
+ value="ๅƒ่‘ก่„ไธๅ่‘ก่„็šฎ๏ผŒไธๅƒ่‘ก่„ๅ€’ๅ่‘ก่„็šฎใ€‚",
185
+ )
186
+ speaker = gr.Dropdown(
187
+ choices=speakers, value=speakers[0], label="Speaker"
188
+ )
189
+ sdp_ratio = gr.Slider(
190
+ minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
191
+ )
192
+ noise_scale = gr.Slider(
193
+ minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
194
+ )
195
+ noise_scale_w = gr.Slider(
196
+ minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
197
+ )
198
+ length_scale = gr.Slider(
199
+ minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
200
+ )
201
+ language = gr.Dropdown(
202
+ choices=languages, value=languages[0], label="Language"
203
+ )
204
+ btn = gr.Button("Generate!", variant="primary")
205
+ with gr.Column():
206
+ text_output = gr.Textbox(label="Message")
207
+ audio_output = gr.Audio(label="Output Audio")
208
+
209
+ btn.click(
210
+ tts_fn,
211
+ inputs=[
212
+ text,
213
+ speaker,
214
+ sdp_ratio,
215
+ noise_scale,
216
+ noise_scale_w,
217
+ length_scale,
218
+ language,
219
+ ],
220
+ outputs=[text_output, audio_output],
221
+ )
222
+
223
+ webbrowser.open("http://127.0.0.1:7860")
224
+ app.launch(share=args.share)