Display averages by default
Browse files- src/display/utils.py +9 -9
src/display/utils.py
CHANGED
|
@@ -29,14 +29,14 @@ auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent(
|
|
| 29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
|
| 30 |
|
| 31 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Model Information")])
|
| 32 |
-
auto_eval_column_dict.append(["average_IE", ColumnContent, ColumnContent("Average IE ⬆️", "number",
|
| 33 |
-
auto_eval_column_dict.append(["average_TA", ColumnContent, ColumnContent("Average TA ⬆️", "number",
|
| 34 |
-
auto_eval_column_dict.append(["average_QA", ColumnContent, ColumnContent("Average QA ⬆️", "number",
|
| 35 |
-
auto_eval_column_dict.append(["average_TG", ColumnContent, ColumnContent("Average TG ⬆️", "number",
|
| 36 |
-
auto_eval_column_dict.append(["average_RM", ColumnContent, ColumnContent("Average RM ⬆️", "number",
|
| 37 |
-
auto_eval_column_dict.append(["average_FO", ColumnContent, ColumnContent("Average FO ⬆️", "number",
|
| 38 |
-
auto_eval_column_dict.append(["average_DM", ColumnContent, ColumnContent("Average DM ⬆️", "number",
|
| 39 |
-
auto_eval_column_dict.append(["average_Spanish", ColumnContent, ColumnContent("Average Spanish ⬆️", "number",
|
| 40 |
|
| 41 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
|
| 42 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
|
|
@@ -49,7 +49,7 @@ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Avai
|
|
| 49 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Model Information", hidden=False)])
|
| 50 |
|
| 51 |
for task in Tasks:
|
| 52 |
-
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number",
|
| 53 |
|
| 54 |
# We use make_dataclass to dynamically fill the scores from Tasks
|
| 55 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|
|
|
|
| 29 |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, category="Model Information", never_hidden=True)])
|
| 30 |
|
| 31 |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True, category="Model Information")])
|
| 32 |
+
auto_eval_column_dict.append(["average_IE", ColumnContent, ColumnContent("Average IE ⬆️", "number", True, category="Information Extraction (IE)")])
|
| 33 |
+
auto_eval_column_dict.append(["average_TA", ColumnContent, ColumnContent("Average TA ⬆️", "number", True, category="Textual Analysis (TA)")])
|
| 34 |
+
auto_eval_column_dict.append(["average_QA", ColumnContent, ColumnContent("Average QA ⬆️", "number", True, category="Question Answering (QA)")])
|
| 35 |
+
auto_eval_column_dict.append(["average_TG", ColumnContent, ColumnContent("Average TG ⬆️", "number", True, category="Text Generation (TG)")])
|
| 36 |
+
auto_eval_column_dict.append(["average_RM", ColumnContent, ColumnContent("Average RM ⬆️", "number", True, category="Risk Management (RM)")])
|
| 37 |
+
auto_eval_column_dict.append(["average_FO", ColumnContent, ColumnContent("Average FO ⬆️", "number", True, category="Forecasting (FO)")])
|
| 38 |
+
auto_eval_column_dict.append(["average_DM", ColumnContent, ColumnContent("Average DM ⬆️", "number", True, category="Decision-Making (DM)")])
|
| 39 |
+
auto_eval_column_dict.append(["average_Spanish", ColumnContent, ColumnContent("Average Spanish ⬆️", "number", True, category="Spanish")])
|
| 40 |
|
| 41 |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, category="Model Information")])
|
| 42 |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, category="Model Information")])
|
|
|
|
| 49 |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, category="Model Information", hidden=False)])
|
| 50 |
|
| 51 |
for task in Tasks:
|
| 52 |
+
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", False, category=task.value.category)])
|
| 53 |
|
| 54 |
# We use make_dataclass to dynamically fill the scores from Tasks
|
| 55 |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
|