|
import gradio as gr |
|
import torch |
|
|
|
from PIL import Image |
|
import numpy as np |
|
from spectro import wav_bytes_from_spectrogram_image |
|
|
|
from diffusers import StableDiffusionPipeline |
|
from diffusers import StableDiffusionImg2ImgPipeline |
|
|
|
|
|
|
|
device = "cuda" |
|
MODEL_ID = "riffusion/riffusion-model-v1" |
|
pipe = StableDiffusionPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16) |
|
pipe = pipe.to(device) |
|
pipe2 = StableDiffusionImg2ImgPipeline.from_pretrained(MODEL_ID, torch_dtype=torch.float16) |
|
pipe2 = pipe2.to(device) |
|
|
|
spectro_from_wav = gr.Interface.load("spaces/fffiloni/audio-to-spectrogram") |
|
|
|
def predict(prompt, negative_prompt, audio_input, duration): |
|
if audio_input == None : |
|
return classic(prompt, negative_prompt, duration) |
|
else : |
|
return style_transfer(prompt, negative_prompt, audio_input) |
|
|
|
def classic(prompt, negative_prompt, duration): |
|
if duration == 5: |
|
width_duration=512 |
|
else : |
|
width_duration = 512 + ((int(duration)-5) * 128) |
|
spec = pipe(prompt, negative_prompt=negative_prompt, height=512, width=width_duration).images[0] |
|
print(spec) |
|
wav = wav_bytes_from_spectrogram_image(spec) |
|
with open("output.wav", "wb") as f: |
|
f.write(wav[0].getbuffer()) |
|
return spec, 'output.wav' |
|
|
|
def style_transfer(prompt, negative_prompt, audio_input): |
|
spec = spectro_from_wav(audio_input) |
|
print(spec) |
|
|
|
im = Image.open(spec) |
|
|
|
|
|
|
|
im = image_from_spectrogram(im, 1) |
|
|
|
|
|
new_spectro = pipe2(prompt=prompt, image=im, strength=0.5, guidance_scale=7).images |
|
wav = wav_bytes_from_spectrogram_image(new_spectro[0]) |
|
with open("output.wav", "wb") as f: |
|
f.write(wav[0].getbuffer()) |
|
return new_spectro[0], 'output.wav' |
|
|
|
def image_from_spectrogram( |
|
spectrogram: np.ndarray, max_volume: float = 50, power_for_image: float = 0.25 |
|
) -> Image.Image: |
|
""" |
|
Compute a spectrogram image from a spectrogram magnitude array. |
|
""" |
|
|
|
data = np.power(spectrogram, power_for_image) |
|
|
|
|
|
data = data * 255 / max_volume |
|
|
|
|
|
data = 255 - data |
|
|
|
|
|
image = Image.fromarray(data.astype(np.uint8)) |
|
|
|
|
|
image = image.transpose(Image.FLIP_TOP_BOTTOM) |
|
|
|
|
|
image = image.convert("RGB") |
|
|
|
return image |
|
|
|
title = """ |
|
<div style="text-align: center; max-width: 500px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
margin-bottom: 10px; |
|
line-height: 1em; |
|
" |
|
> |
|
<h1 style="font-weight: 600; margin-bottom: 7px;"> |
|
Riffusion real-time music generation |
|
</h1> |
|
</div> |
|
<p style="margin-bottom: 10px;font-size: 94%;font-weight: 100;line-height: 1.5em;"> |
|
Describe a musical prompt, generate music by getting a spectrogram image & sound. |
|
</p> |
|
</div> |
|
""" |
|
|
|
article = """ |
|
<p style="text-align: center;font-size: 94%;margin-bottom: 20px;"> |
|
Do you need faster results ? You can skip the queue by duplicating this space: |
|
<span style="display: flex;align-items: center;justify-content: center;height: 30px;"> |
|
<a style="margin-right: 10px;" href="https://huggingface.co/fffiloni/spectrogram-to-music?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> |
|
<a href="https://colab.research.google.com/drive/1FhH3HlN8Ps_Pr9OR6Qcfbfz7utDvICl0?usp=sharing" target="_blank"><img src="https://colab.research.google.com/assets/colab-badge.svg" /></a> |
|
</span> |
|
</p> |
|
|
|
<p style="font-size: 0.8em;line-height: 1.2em;border: 1px solid #374151;border-radius: 8px;padding: 20px;"> |
|
About the model: Riffusion is a latent text-to-image diffusion model capable of generating spectrogram images given any text input. These spectrograms can be converted into audio clips. |
|
<br />β |
|
<br />The Riffusion model was created by fine-tuning the Stable-Diffusion-v1-5 checkpoint. |
|
<br />β |
|
<br />The model is intended for research purposes only. Possible research areas and tasks include |
|
generation of artworks, audio, and use in creative processes, applications in educational or creative tools, research on generative models. |
|
|
|
</p> |
|
|
|
<div class="footer"> |
|
<p> |
|
<a href="https://huggingface.co/riffusion/riffusion-model-v1" target="_blank">Riffusion model</a> by Seth Forsgren and Hayk Martiros - |
|
Demo by π€ <a href="https://twitter.com/fffiloni" target="_blank">Sylvain Filoni</a> |
|
</p> |
|
</div> |
|
|
|
<div id="may-like-container" style="display: flex;justify-content: center;flex-direction: column;align-items: center;"> |
|
<p style="font-size: 0.8em;margin-bottom: 4px;">You may also like: </p> |
|
<div id="may-like" style="display:flex; align-items:center; justify-content: center;height:20px;"> |
|
<svg height="20" width="158" style="margin-left:4px"> |
|
<a href="https://huggingface.co/spaces/fffiloni/img-to-music" target="_blank"> |
|
<image href="https://img.shields.io/badge/π€ Spaces-Image to Music-blue" src="https://img.shields.io/badge/π€ Spaces-Image to Music-blue.png" height="20"/> |
|
</a> |
|
</svg> |
|
</div> |
|
</div> |
|
|
|
""" |
|
|
|
css = ''' |
|
#col-container, #col-container-2 {max-width: 510px; margin-left: auto; margin-right: auto;} |
|
a {text-decoration-line: underline; font-weight: 600;} |
|
div#record_btn > .mt-6 { |
|
margin-top: 0!important; |
|
} |
|
div#record_btn > .mt-6 button { |
|
width: 100%; |
|
height: 40px; |
|
} |
|
.footer { |
|
margin-bottom: 45px; |
|
margin-top: 10px; |
|
text-align: center; |
|
border-bottom: 1px solid #e5e5e5; |
|
} |
|
.footer>p { |
|
font-size: .8rem; |
|
display: inline-block; |
|
padding: 0 10px; |
|
transform: translateY(10px); |
|
background: white; |
|
} |
|
.dark .footer { |
|
border-color: #303030; |
|
} |
|
.dark .footer>p { |
|
background: #0b0f19; |
|
} |
|
.animate-spin { |
|
animation: spin 1s linear infinite; |
|
} |
|
@keyframes spin { |
|
from { |
|
transform: rotate(0deg); |
|
} |
|
to { |
|
transform: rotate(360deg); |
|
} |
|
} |
|
#share-btn-container { |
|
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; |
|
} |
|
#share-btn { |
|
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; |
|
} |
|
#share-btn * { |
|
all: unset; |
|
} |
|
#share-btn-container div:nth-child(-n+2){ |
|
width: auto !important; |
|
min-height: 0px !important; |
|
} |
|
#share-btn-container .wrap { |
|
display: none !important; |
|
} |
|
|
|
''' |
|
|
|
|
|
|
|
with gr.Blocks(css="style.css") as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
|
|
gr.HTML(title) |
|
|
|
prompt_input = gr.Textbox(placeholder="a cat diva singing in a New York jazz club", label="Musical prompt", elem_id="prompt-in") |
|
audio_input = gr.Audio(sources=["upload"], type="filepath", visible=False) |
|
with gr.Row(): |
|
negative_prompt = gr.Textbox(label="Negative prompt") |
|
duration_input = gr.Slider(label="Duration in seconds", minimum=5, maximum=10, step=1, value=8, elem_id="duration-slider") |
|
|
|
send_btn = gr.Button(value="Get a new spectrogram ! ", elem_id="submit-btn") |
|
|
|
with gr.Column(elem_id="col-container-2"): |
|
|
|
spectrogram_output = gr.Image(label="spectrogram image result", elem_id="img-out") |
|
sound_output = gr.Audio(type='filepath', label="spectrogram sound", elem_id="music-out") |
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.HTML(article) |
|
|
|
send_btn.click(predict, inputs=[prompt_input, negative_prompt, audio_input, duration_input], outputs=[spectrogram_output, sound_output]) |
|
|
|
|
|
demo.queue(max_size=250).launch(debug=True) |
|
|