Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | 
         @@ -35,6 +35,9 @@ pipe.to("cuda") 
     | 
|
| 35 | 
         
             
            #pipe.enable_model_cpu_offload()
         
     | 
| 36 | 
         | 
| 37 | 
         
             
            def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed, progress=gr.Progress(track_tqdm=True)):
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 38 | 
         | 
| 39 | 
         
             
                if preprocessor == "canny":
         
     | 
| 40 | 
         | 
| 
         @@ -52,11 +55,6 @@ def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, ne 
     | 
|
| 52 | 
         
             
                    # This is where you load your trained weights
         
     | 
| 53 | 
         
             
                    pipe.load_lora_weights(custom_model, use_auth_token=True)
         
     | 
| 54 | 
         | 
| 55 | 
         
            -
                prompt = prompt
         
     | 
| 56 | 
         
            -
                negative_prompt = negative_prompt
         
     | 
| 57 | 
         
            -
                generator = torch.Generator(device="cuda").manual_seed(seed)
         
     | 
| 58 | 
         
            -
             
     | 
| 59 | 
         
            -
                if use_custom_model:
         
     | 
| 60 | 
         
             
                    lora_scale=custom_lora_weight
         
     | 
| 61 | 
         | 
| 62 | 
         
             
                    images = pipe(
         
     | 
| 
         @@ -123,4 +121,4 @@ with gr.Blocks(css=css) as demo: 
     | 
|
| 123 | 
         
             
                    outputs = [result]
         
     | 
| 124 | 
         
             
                )
         
     | 
| 125 | 
         | 
| 126 | 
         
            -
            demo.queue().launch()
         
     | 
| 
         | 
|
| 35 | 
         
             
            #pipe.enable_model_cpu_offload()
         
     | 
| 36 | 
         | 
| 37 | 
         
             
            def infer(use_custom_model, model_name, custom_lora_weight, image_in, prompt, negative_prompt, preprocessor, controlnet_conditioning_scale, guidance_scale, steps, seed, progress=gr.Progress(track_tqdm=True)):
         
     | 
| 38 | 
         
            +
                prompt = prompt
         
     | 
| 39 | 
         
            +
                negative_prompt = negative_prompt
         
     | 
| 40 | 
         
            +
                generator = torch.Generator(device="cuda").manual_seed(seed)
         
     | 
| 41 | 
         | 
| 42 | 
         
             
                if preprocessor == "canny":
         
     | 
| 43 | 
         | 
| 
         | 
|
| 55 | 
         
             
                    # This is where you load your trained weights
         
     | 
| 56 | 
         
             
                    pipe.load_lora_weights(custom_model, use_auth_token=True)
         
     | 
| 57 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 58 | 
         
             
                    lora_scale=custom_lora_weight
         
     | 
| 59 | 
         | 
| 60 | 
         
             
                    images = pipe(
         
     | 
| 
         | 
|
| 121 | 
         
             
                    outputs = [result]
         
     | 
| 122 | 
         
             
                )
         
     | 
| 123 | 
         | 
| 124 | 
         
            +
            demo.queue(max_size=12).launch()
         
     |