|
""" |
|
Copyright (c) 2022, salesforce.com, inc. |
|
All rights reserved. |
|
SPDX-License-Identifier: BSD-3-Clause |
|
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause |
|
""" |
|
|
|
import argparse |
|
import os |
|
import random |
|
|
|
import numpy as np |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
|
|
import minigpt4.tasks as tasks |
|
from minigpt4.common.config import Config |
|
from minigpt4.common.dist_utils import get_rank, init_distributed_mode |
|
from minigpt4.common.logger import setup_logger |
|
from minigpt4.common.optims import ( |
|
LinearWarmupCosineLRScheduler, |
|
LinearWarmupStepLRScheduler, |
|
) |
|
from minigpt4.common.registry import registry |
|
from minigpt4.common.utils import now |
|
|
|
|
|
from minigpt4.datasets.builders import * |
|
from minigpt4.models import * |
|
from minigpt4.processors import * |
|
from minigpt4.runners import * |
|
from minigpt4.tasks import * |
|
import wandb |
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description="Training") |
|
|
|
parser.add_argument("--cfg-path", required=True, help="path to configuration file.") |
|
parser.add_argument( |
|
"--options", |
|
nargs="+", |
|
help="override some settings in the used config, the key-value pair " |
|
"in xxx=yyy format will be merged into config file (deprecate), " |
|
"change to --cfg-options instead.", |
|
) |
|
parser.add_argument("--job_name",default="minigpt_spatial_coco_control",type=str) |
|
|
|
args = parser.parse_args() |
|
if 'LOCAL_RANK' not in os.environ: |
|
os.environ['LOCAL_RANK'] = str(args.local_rank) |
|
|
|
return args |
|
|
|
|
|
def setup_seeds(config): |
|
seed = config.run_cfg.seed + get_rank() |
|
|
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
|
|
cudnn.benchmark = False |
|
cudnn.deterministic = True |
|
|
|
|
|
def get_runner_class(cfg): |
|
""" |
|
Get runner class from config. Default to epoch-based runner. |
|
""" |
|
runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base")) |
|
|
|
return runner_cls |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
|
|
job_id = now() |
|
args = parse_args() |
|
cfg = Config(args) |
|
init_distributed_mode(cfg.run_cfg) |
|
setup_seeds(cfg) |
|
|
|
|
|
|
|
setup_logger() |
|
wandb.login() |
|
|
|
cfg.pretty_print() |
|
|
|
task = tasks.setup_task(cfg) |
|
datasets = task.build_datasets(cfg) |
|
model = task.build_model(cfg) |
|
if not hasattr(cfg.run_cfg, 'rank') or cfg.run_cfg.rank == 0: |
|
print("project name", args.job_name) |
|
|
|
wandb.init(project="minigpt4-spatial",name=args.job_name) |
|
|
|
wandb.config = {"learning_rate": 0.0001, "epochs": 100, "batch_size": 8} |
|
wandb.watch(model) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
runner = get_runner_class(cfg)( |
|
cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets |
|
) |
|
runner.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|