|
import os |
|
import json |
|
import numpy as np |
|
import argparse |
|
import pathlib |
|
from collections import Counter |
|
|
|
from load_aokvqa import load_aokvqa |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--aokvqa-dir', type=pathlib.Path, required=True, dest='aokvqa_dir') |
|
parser.add_argument('--split', type=str, choices=['train', 'val', 'test'], required=True) |
|
parser.add_argument('--mc', action='store_true', dest='multiple_choice') |
|
parser.add_argument('--out', type=argparse.FileType('w'), required=True, dest='output_file') |
|
args = parser.parse_args() |
|
|
|
np.random.seed(0) |
|
|
|
train_set = load_aokvqa(args.aokvqa_dir, 'train') |
|
train_freq = dict(Counter( |
|
[d['choices'][d['correct_choice_idx']] for d in train_set] |
|
)) |
|
|
|
if args.multiple_choice is False: |
|
choices = list(train_freq.keys()) |
|
probs = [f / len(train_set) for f in train_freq.values()] |
|
|
|
|
|
|
|
predictions = {} |
|
|
|
eval_set = load_aokvqa(args.aokvqa_dir, args.split) |
|
|
|
for d in eval_set: |
|
if args.multiple_choice: |
|
choices = d['choices'] |
|
probs = [train_freq.get(c, 0) for c in choices] |
|
if probs == [0, 0, 0, 0]: |
|
probs = [1, 1, 1, 1] |
|
probs = [p / sum(probs) for p in probs] |
|
|
|
q = d['question_id'] |
|
predictions[q] = np.random.choice(choices, size=1, p=probs)[0] |
|
|
|
json.dump(predictions, args.output_file) |
|
|