File size: 1,673 Bytes
2ada650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import argparse
import pathlib
import json
from tqdm import tqdm

from sentence_transformers import SentenceTransformer
from sentence_transformers.util import cos_sim

from load_aokvqa import load_aokvqa


def map_to_choices(dataset, predictions, device='cpu'):
    if isinstance(dataset, list):
        dataset = { dataset[i]['question_id'] : dataset[i] for i in range(len(dataset)) }

    if all([p in dataset[q]['choices'] for q, p in predictions.items()]):
        return predictions

    model = SentenceTransformer('sentence-transformers/average_word_embeddings_glove.6B.300d')
    model.to(device)
    for q in tqdm(predictions.keys()):
        choices = dataset[q]['choices']
        if predictions[q] not in choices:
            choice_embeddings = model.encode([predictions[q]] + choices, convert_to_tensor=True)
            a_idx = cos_sim(choice_embeddings[0], choice_embeddings[1:]).argmax().item()
            predictions[q] = choices[a_idx]

    return predictions


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--aokvqa-dir', type=pathlib.Path, required=True, dest='aokvqa_dir')
    parser.add_argument('--split', type=str, choices=['train', 'val', 'test'], required=True)
    parser.add_argument('--pred', type=argparse.FileType('r'), required=True, dest='prediction_file')
    parser.add_argument('--out', type=argparse.FileType('w'), required=True, dest='output_file')
    args = parser.parse_args()


    dataset = load_aokvqa(args.aokvqa_dir, args.split)
    predictions = json.load(args.prediction_file)
    predictions = map_to_choices(dataset, predictions)

    json.dump(predictions, args.output_file)