File size: 21,717 Bytes
e462867
 
 
 
 
 
 
 
 
 
 
 
b05a757
 
e8b95ac
b05a757
e8b95ac
b05a757
 
 
 
 
14c57e1
84cf951
 
 
 
b33af86
b05a757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40a61ce
e462867
 
 
 
04c3d70
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c57e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05a757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3347b2c
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c57e1
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14c57e1
 
e462867
 
 
14c57e1
 
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05a757
 
 
e462867
 
 
 
 
 
 
 
 
 
 
a2395b4
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2aec3f3
 
 
 
 
 
 
 
 
 
e462867
 
 
 
 
 
 
 
 
 
 
c7cabc0
 
 
e462867
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c83f7a
 
e462867
 
 
 
 
 
88ef13f
e462867
 
 
 
 
 
 
 
 
 
 
 
 
b05a757
04c3d70
 
19ce4f2
04c3d70
19ce4f2
04c3d70
 
e462867
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.

import argparse
import os
import sys
import datetime
import imageio
import numpy as np
import torch
import gradio as gr

is_shared_ui = True if "fffiloni/Wan2.1-VACE-1.3B" in os.environ['SPACE_ID'] else False
is_gpu_associated = torch.cuda.is_available()

from huggingface_hub import snapshot_download

if not is_shared_ui and is_gpu_associated:
    snapshot_download(
        repo_id = "Wan-AI/Wan2.1-VACE-1.3B",
        local_dir = "./models/Wan2.1-VACE-1.3B"
    )

    sys.path.insert(0, os.path.sep.join(os.path.realpath(__file__).split(os.path.sep)[:-2]))
    import wan
    from wan import WanVace, WanVaceMP
    from wan.configs import WAN_CONFIGS, SIZE_CONFIGS

css = """
div#warning-duplicate {
    background-color: #ebf5ff;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-duplicate > .gr-prose > h2, div#warning-duplicate > .gr-prose > p {
    color: #0f4592!important;
}
div#warning-duplicate strong {
    color: #0f4592;
}
p.actions {
    display: flex;
    align-items: center;
    margin: 20px 0;
}
div#warning-duplicate .actions a {
    display: inline-block;
    margin-right: 10px;
}
div#warning-setgpu {
    background-color: #fff4eb;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-setgpu > .gr-prose > h2, div#warning-setgpu > .gr-prose > p {
    color: #92220f!important;
}
div#warning-setgpu a, div#warning-setgpu b {
    color: #91230f;
}
div#warning-setgpu p.actions > a {
    display: inline-block;
    background: #1f1f23;
    border-radius: 40px;
    padding: 6px 24px;
    color: antiquewhite;
    text-decoration: none;
    font-weight: 600;
    font-size: 1.2em;
}
div#warning-ready {
    background-color: #ecfdf5;
    padding: 0 16px 16px;
    margin: 20px 0;
    color: #030303!important;
}
div#warning-ready > .gr-prose > h2, div#warning-ready > .gr-prose > p {
    color: #057857!important;
}
.custom-color {
    color: #030303 !important;
}
"""


class FixedSizeQueue:
    def __init__(self, max_size):
        self.max_size = max_size
        self.queue = []
    def add(self, item):
        self.queue.insert(0, item)
        if len(self.queue) > self.max_size:
            self.queue.pop()
    def get(self):
        return self.queue
    def __repr__(self):
        return str(self.queue)


class VACEInference:
    def __init__(self, cfg, skip_load=False, gallery_share=False, gallery_share_limit=5):
        self.cfg = cfg
        self.save_dir = cfg.save_dir
        self.gallery_share = gallery_share
        self.gallery_share_data = FixedSizeQueue(max_size=gallery_share_limit)

        if not skip_load:
            if not args.mp:
                self.pipe = WanVace(
                    config=WAN_CONFIGS[cfg.model_name],
                    checkpoint_dir=cfg.ckpt_dir,
                    device_id=0,
                    rank=0,
                    t5_fsdp=False,
                    dit_fsdp=False,
                    use_usp=False,
                )
            else:
                self.pipe = WanVaceMP(
                    config=WAN_CONFIGS[cfg.model_name],
                    checkpoint_dir=cfg.ckpt_dir,
                    use_usp=True,
                    ulysses_size=cfg.ulysses_size,
                    ring_size=cfg.ring_size
                )


    def create_ui(self, *args, **kwargs):

        gr.Markdown("# VACE-WAN 1.3B Demo")
        gr.Markdown("All-in-One Video Creation and Editing")

        gr.HTML("""
            <div style="display:flex;column-gap:4px;">
                <a href="https://ali-vilab.github.io/VACE-Page/">
                    <img src='https://img.shields.io/badge/Project-Page-green'>
                </a> 
    			
                <a href="https://huggingface.co/spaces/fffiloni/Wan2.1-VACE-1.3B?duplicate=true">
    				<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
    			</a>	
            </div>
        """)
        with gr.Column():
            if is_shared_ui:
                top_description = gr.HTML(f'''
                    <div class="gr-prose">
                        <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                        Attention: this Space need to be duplicated to work</h2>
                        <p class="main-message custom-color">
                            To make it work, <strong>duplicate the Space</strong> and run it on your own profile using a <strong>private</strong> GPU (L40s recommended).<br />
                            A L40s costs <strong>US$1.80/h</strong>. 
                        </p>
                        <p class="actions custom-color">
                            <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}?duplicate=true">
                                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg-dark.svg" alt="Duplicate this Space" />
                            </a>
                            to start experimenting with this demo
                        </p>
                    </div>
                ''', elem_id="warning-duplicate")
            else:
                if(is_gpu_associated):
                    top_description = gr.HTML(f'''
                        <div class="gr-prose">
                            <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                            You have successfully associated a GPU to this Space πŸŽ‰</h2>
                            <p class="custom-color">
                                You will be billed by the minute from when you activated the GPU until when it is turned off.
                            </p> 
                        </div>
                        ''', elem_id="warning-ready")
                else:
                    top_description = gr.HTML(f'''
                        <div class="gr-prose">
                            <h2 class="custom-color"><svg xmlns="http://www.w3.org/2000/svg" width="18px" height="18px" style="margin-right: 0px;display: inline-block;"fill="none"><path fill="#fff" d="M7 13.2a6.3 6.3 0 0 0 4.4-10.7A6.3 6.3 0 0 0 .6 6.9 6.3 6.3 0 0 0 7 13.2Z"/><path fill="#fff" fill-rule="evenodd" d="M7 0a6.9 6.9 0 0 1 4.8 11.8A6.9 6.9 0 0 1 0 7 6.9 6.9 0 0 1 7 0Zm0 0v.7V0ZM0 7h.6H0Zm7 6.8v-.6.6ZM13.7 7h-.6.6ZM9.1 1.7c-.7-.3-1.4-.4-2.2-.4a5.6 5.6 0 0 0-4 1.6 5.6 5.6 0 0 0-1.6 4 5.6 5.6 0 0 0 1.6 4 5.6 5.6 0 0 0 4 1.7 5.6 5.6 0 0 0 4-1.7 5.6 5.6 0 0 0 1.7-4 5.6 5.6 0 0 0-1.7-4c-.5-.5-1.1-.9-1.8-1.2Z" clip-rule="evenodd"/><path fill="#000" fill-rule="evenodd" d="M7 2.9a.8.8 0 1 1 0 1.5A.8.8 0 0 1 7 3ZM5.8 5.7c0-.4.3-.6.6-.6h.7c.3 0 .6.2.6.6v3.7h.5a.6.6 0 0 1 0 1.3H6a.6.6 0 0 1 0-1.3h.4v-3a.6.6 0 0 1-.6-.7Z" clip-rule="evenodd"/></svg>
                            You have successfully duplicated the MimicMotion Space πŸŽ‰</h2>
                            <p class="custom-color">There's only one step left before you can properly play with this demo: <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a GPU</b> to it (via the Settings tab)</a> and run the app below.
                            You will be billed by the minute from when you activate the GPU until when it is turned off.</p> 
                            <p class="actions custom-color">
                                <a href="https://huggingface.co/spaces/{os.environ['SPACE_ID']}/settings">πŸ”₯ &nbsp; Set recommended GPU</a>
                            </p>
                        </div>
                    ''', elem_id="warning-setgpu")            
        with gr.Row(variant='panel', equal_height=True):
            with gr.Column(scale=1, min_width=0):
                self.src_video = gr.Video(
                    label="src_video",
                    sources=['upload'],
                    value=None,
                    interactive=True)
            with gr.Column(scale=1, min_width=0):
                self.src_mask = gr.Video(
                    label="src_mask",
                    sources=['upload'],
                    value=None,
                    interactive=True)
        #
        with gr.Row(variant='panel', equal_height=True):
            with gr.Column(scale=1, min_width=0):
                with gr.Row(equal_height=True):
                    self.src_ref_image_1 = gr.Image(label='src_ref_image_1',
                                                    height=200,
                                                    interactive=True,
                                                    type='filepath',
                                                    image_mode='RGB',
                                                    sources=['upload'],
                                                    elem_id="src_ref_image_1",
                                                    format='png')
                    self.src_ref_image_2 = gr.Image(label='src_ref_image_2',
                                                    height=200,
                                                    interactive=True,
                                                    type='filepath',
                                                    image_mode='RGB',
                                                    sources=['upload'],
                                                    elem_id="src_ref_image_2",
                                                    format='png')
                    self.src_ref_image_3 = gr.Image(label='src_ref_image_3',
                                                    height=200,
                                                    interactive=True,
                                                    type='filepath',
                                                    image_mode='RGB',
                                                    sources=['upload'],
                                                    elem_id="src_ref_image_3",
                                                    format='png')
        with gr.Row(variant='panel', equal_height=True):
            with gr.Column(scale=1):
                self.prompt = gr.Textbox(
                    show_label=False,
                    placeholder="positive_prompt_input",
                    elem_id='positive_prompt',
                    container=True,
                    autofocus=True,
                    elem_classes='type_row',
                    visible=True,
                    lines=2)
                self.negative_prompt = gr.Textbox(
                    show_label=False,
                    value="Bright and saturated tones, overexposed, static, unclear details, subtitles, style, work, painting, frame, still, overall grayish, worst quality, low quality, JPEG compression artifacts, ugly, deformed, extra fingers, poorly drawn hands, poorly drawn face, deformed, disfigured, misshapen limbs, fused fingers, motionless frame, cluttered background, three legs, crowded background, walking backwards.",
                    placeholder="negative_prompt_input",
                    elem_id='negative_prompt',
                    container=True,
                    autofocus=False,
                    elem_classes='type_row',
                    visible=True,
                    interactive=True,
                    lines=1)
        #
        with gr.Row(variant='panel', equal_height=True):
            with gr.Column(scale=1, min_width=0):
                with gr.Row(equal_height=True):
                    self.shift_scale = gr.Slider(
                        label='shift_scale',
                        minimum=0.0,
                        maximum=100.0,
                        step=1.0,
                        value=16.0,
                        interactive=True)
                    self.sample_steps = gr.Slider(
                        label='sample_steps',
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=25,
                        interactive=False if is_shared_ui else True)
                    self.context_scale = gr.Slider(
                        label='context_scale',
                        minimum=0.0,
                        maximum=2.0,
                        step=0.1,
                        value=1.0,
                        interactive=True)
                    self.guide_scale = gr.Slider(
                        label='guide_scale',
                        minimum=1,
                        maximum=10,
                        step=0.5,
                        value=5.0,
                        interactive=True)
                    self.infer_seed = gr.Slider(minimum=-1,
                                                maximum=10000000,
                                                value=2025,
                                                label="Seed")
        #
        with gr.Accordion(label="Usable without source video", open=False):
            with gr.Row(equal_height=True):
                self.output_height = gr.Textbox(
                    label='resolutions_height',
                    value=480,
                    #value=720,
                    interactive=True)
                self.output_width = gr.Textbox(
                    label='resolutions_width',
                    value=832,
                    #value=1280,
                    interactive=True)
                self.frame_rate = gr.Textbox(
                    label='frame_rate',
                    value=16,
                    interactive=True)
                self.num_frames = gr.Textbox(
                    label='num_frames',
                    value=81,
                    interactive=True)
        #
        with gr.Row(equal_height=True):
            with gr.Column(scale=5):
                self.generate_button = gr.Button(
                    value='Run',
                    elem_classes='type_row',
                    elem_id='generate_button',
                    visible=True,
                    interactive = False if is_shared_ui else True
                )
            with gr.Column(scale=1):
                self.refresh_button = gr.Button(value='\U0001f504')  # πŸ”„
        #
        self.output_gallery = gr.Gallery(
            label="output_gallery",
            value=[],
            interactive=False,
            allow_preview=True,
            preview=True)


    def generate(self, output_gallery, src_video, src_mask, src_ref_image_1, src_ref_image_2, src_ref_image_3, prompt, negative_prompt, shift_scale, sample_steps, context_scale, guide_scale, infer_seed, output_height, output_width, frame_rate, num_frames, progress=gr.Progress(track_tqdm=True)):
        output_height, output_width, frame_rate, num_frames = int(output_height), int(output_width), int(frame_rate), int(num_frames)
        src_ref_images = [x for x in [src_ref_image_1, src_ref_image_2, src_ref_image_3] if
                          x is not None]
        src_video, src_mask, src_ref_images = self.pipe.prepare_source([src_video],
                                                                         [src_mask],
                                                                         [src_ref_images],
                                                                         num_frames=num_frames,
                                                                         image_size=SIZE_CONFIGS[f"{output_width}*{output_height}"],
                                                                         device=self.pipe.device)
        video = self.pipe.generate(
            prompt,
            src_video,
            src_mask,
            src_ref_images,
            size=(output_width, output_height),
            context_scale=context_scale,
            shift=shift_scale,
            sampling_steps=sample_steps,
            guide_scale=guide_scale,
            n_prompt=negative_prompt,
            seed=infer_seed,
            offload_model=True)

        name = '{0:%Y%m%d%-H%M%S}'.format(datetime.datetime.now())

        base_save_dir = './output'
        save_dir_path = os.path.join(base_save_dir, name)

        # Create the directory
        os.makedirs(save_dir_path, exist_ok=True)

        print(f"βœ… Folder created: {save_dir_path}")

        video_path = os.path.join(save_dir_path, f'cur_gallery_{name}.mp4')
        video_frames = (torch.clamp(video / 2 + 0.5, min=0.0, max=1.0).permute(1, 2, 3, 0) * 255).cpu().numpy().astype(np.uint8)

        try:
            writer = imageio.get_writer(video_path, fps=frame_rate, codec='libx264', quality=8, macro_block_size=1)
            for frame in video_frames:
                writer.append_data(frame)
            writer.close()
            print(video_path)
        except Exception as e:
            raise gr.Error(f"Video save error: {e}")

        #if self.gallery_share:
        #    self.gallery_share_data.add(video_path)
        #    return self.gallery_share_data.get()
        else:
            return [video_path]

    def set_callbacks(self, **kwargs):
        self.gen_inputs = [self.output_gallery, self.src_video, self.src_mask, self.src_ref_image_1, self.src_ref_image_2, self.src_ref_image_3, self.prompt, self.negative_prompt, self.shift_scale, self.sample_steps, self.context_scale, self.guide_scale, self.infer_seed, self.output_height, self.output_width, self.frame_rate, self.num_frames]
        self.gen_outputs = [self.output_gallery]
        self.generate_button.click(self.generate,
                                   inputs=self.gen_inputs,
                                   outputs=self.gen_outputs,
                                   queue=True)
        self.refresh_button.click(lambda x: self.gallery_share_data.get() if self.gallery_share else x, inputs=[self.output_gallery], outputs=[self.output_gallery])


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Argparser for VACE-WAN Demo:\n')
    parser.add_argument('--server_port', dest='server_port', help='', type=int, default=7860)
    parser.add_argument('--server_name', dest='server_name', help='', default='0.0.0.0')
    parser.add_argument('--root_path', dest='root_path', help='', default=None)
    parser.add_argument('--save_dir', dest='save_dir', help='', default='cache')
    parser.add_argument("--mp", action="store_true", help="Use Multi-GPUs",)
    if not is_shared_ui and is_gpu_associated:
        parser.add_argument("--model_name", type=str, default="vace-1.3B", choices=list(WAN_CONFIGS.keys()), help="The model name to run.")
    parser.add_argument("--ulysses_size", type=int, default=1, help="The size of the ulysses parallelism in DiT.")
    parser.add_argument("--ring_size", type=int, default=1, help="The size of the ring attention parallelism in DiT.")
    parser.add_argument(
        "--ckpt_dir",
        type=str,
        # default='models/VACE-Wan2.1-1.3B-Preview',
        default='models/Wan2.1-VACE-1.3B/',
        help="The path to the checkpoint directory.",
    )
    parser.add_argument(
        "--offload_to_cpu",
        action="store_true",
        help="Offloading unnecessary computations to CPU.",
    )

    args = parser.parse_args()

    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir, exist_ok=True)

    with gr.Blocks(css=css) as demo:

        if not is_shared_ui and is_gpu_associated:
            skip_load = False 
        else:
            skip_load = True
        
        infer_gr = VACEInference(args, skip_load=skip_load, gallery_share=True, gallery_share_limit=5)
        infer_gr.create_ui()
        infer_gr.set_callbacks()
        allowed_paths = [args.save_dir]
        demo.queue(status_update_rate=1).launch(server_name=args.server_name,
                                                server_port=args.server_port,
                                                root_path=args.root_path,
                                                allowed_paths=allowed_paths,
                                                show_error=True, debug=True)