Spaces:
Running
on
Zero
Running
on
Zero
| # -*- coding: utf-8 -*- | |
| # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is | |
| # holder of all proprietary rights on this computer program. | |
| # You can only use this computer program if you have closed | |
| # a license agreement with MPG or you get the right to use the computer | |
| # program from someone who is authorized to grant you that right. | |
| # Any use of the computer program without a valid license is prohibited and | |
| # liable to prosecution. | |
| # | |
| # Copyright©2019 Max-Planck-Gesellschaft zur Förderung | |
| # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute | |
| # for Intelligent Systems. All rights reserved. | |
| # | |
| # Contact: [email protected] | |
| from pytorch3d.renderer import ( | |
| BlendParams, | |
| blending, | |
| look_at_view_transform, | |
| FoVOrthographicCameras, | |
| PointLights, | |
| RasterizationSettings, | |
| PointsRasterizationSettings, | |
| PointsRenderer, | |
| AlphaCompositor, | |
| PointsRasterizer, | |
| MeshRenderer, | |
| MeshRasterizer, | |
| SoftPhongShader, | |
| SoftSilhouetteShader, | |
| TexturesVertex, | |
| ) | |
| from pytorch3d.renderer.mesh import TexturesVertex | |
| from pytorch3d.structures import Meshes | |
| from lib.dataset.mesh_util import get_visibility, get_visibility_color | |
| import lib.common.render_utils as util | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from tqdm import tqdm | |
| import os | |
| import cv2 | |
| import math | |
| from termcolor import colored | |
| def image2vid(images, vid_path): | |
| w, h = images[0].size | |
| videodims = (w, h) | |
| fourcc = cv2.VideoWriter_fourcc(*'XVID') | |
| video = cv2.VideoWriter(vid_path, fourcc, len(images) / 5.0, videodims) | |
| for image in images: | |
| video.write(cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)) | |
| video.release() | |
| def query_color(verts, faces, image, device, predicted_color): | |
| """query colors from points and image | |
| Args: | |
| verts ([B, 3]): [query verts] | |
| faces ([M, 3]): [query faces] | |
| image ([B, 3, H, W]): [full image] | |
| Returns: | |
| [np.float]: [return colors] | |
| """ | |
| verts = verts.float().to(device) | |
| faces = faces.long().to(device) | |
| predicted_color=predicted_color.to(device) | |
| (xy, z) = verts.split([2, 1], dim=1) | |
| visibility = get_visibility_color(xy, z, faces[:, [0, 2, 1]]).flatten() | |
| uv = xy.unsqueeze(0).unsqueeze(2) # [B, N, 2] | |
| uv = uv * torch.tensor([1.0, -1.0]).type_as(uv) | |
| colors = (torch.nn.functional.grid_sample( | |
| image, uv, align_corners=True)[0, :, :, 0].permute(1, 0) + | |
| 1.0) * 0.5 * 255.0 | |
| colors[visibility == 0.0]=(predicted_color* 255.0)[visibility == 0.0] | |
| return colors.detach().cpu() | |
| class cleanShader(torch.nn.Module): | |
| def __init__(self, device="cpu", cameras=None, blend_params=None): | |
| super().__init__() | |
| self.cameras = cameras | |
| self.blend_params = blend_params if blend_params is not None else BlendParams( | |
| ) | |
| def forward(self, fragments, meshes, **kwargs): | |
| cameras = kwargs.get("cameras", self.cameras) | |
| if cameras is None: | |
| msg = "Cameras must be specified either at initialization \ | |
| or in the forward pass of TexturedSoftPhongShader" | |
| raise ValueError(msg) | |
| # get renderer output | |
| blend_params = kwargs.get("blend_params", self.blend_params) | |
| texels = meshes.sample_textures(fragments) | |
| images = blending.softmax_rgb_blend(texels, | |
| fragments, | |
| blend_params, | |
| znear=-256, | |
| zfar=256) | |
| return images | |
| class Render: | |
| def __init__(self, size=512, device=torch.device("cuda:0")): | |
| self.device = device | |
| self.size = size | |
| # camera setting | |
| self.dis = 100.0 | |
| self.scale = 100.0 | |
| self.mesh_y_center = 0.0 | |
| self.reload_cam() | |
| self.type = "color" | |
| self.mesh = None | |
| self.deform_mesh = None | |
| self.pcd = None | |
| self.renderer = None | |
| self.meshRas = None | |
| self.uv_rasterizer = util.Pytorch3dRasterizer(self.size) | |
| def reload_cam(self): | |
| self.cam_pos = [ | |
| (0, self.mesh_y_center, self.dis), | |
| (self.dis, self.mesh_y_center, 0), | |
| (0, self.mesh_y_center, -self.dis), | |
| (-self.dis, self.mesh_y_center, 0), | |
| (0,self.mesh_y_center+self.dis,0), | |
| (0,self.mesh_y_center-self.dis,0), | |
| ] | |
| def get_camera(self, cam_id): | |
| if cam_id == 4: | |
| R, T = look_at_view_transform( | |
| eye=[self.cam_pos[cam_id]], | |
| at=((0, self.mesh_y_center, 0), ), | |
| up=((0, 0, 1), ), | |
| ) | |
| elif cam_id == 5: | |
| R, T = look_at_view_transform( | |
| eye=[self.cam_pos[cam_id]], | |
| at=((0, self.mesh_y_center, 0), ), | |
| up=((0, 0, 1), ), | |
| ) | |
| else: | |
| R, T = look_at_view_transform( | |
| eye=[self.cam_pos[cam_id]], | |
| at=((0, self.mesh_y_center, 0), ), | |
| up=((0, 1, 0), ), | |
| ) | |
| camera = FoVOrthographicCameras( | |
| device=self.device, | |
| R=R, | |
| T=T, | |
| znear=100.0, | |
| zfar=-100.0, | |
| max_y=100.0, | |
| min_y=-100.0, | |
| max_x=100.0, | |
| min_x=-100.0, | |
| scale_xyz=(self.scale * np.ones(3), ), | |
| ) | |
| return camera | |
| def init_renderer(self, camera, type="clean_mesh", bg="gray"): | |
| if "mesh" in type: | |
| # rasterizer | |
| self.raster_settings_mesh = RasterizationSettings( | |
| image_size=self.size, | |
| blur_radius=np.log(1.0 / 1e-4) * 1e-7, | |
| faces_per_pixel=30, | |
| ) | |
| self.meshRas = MeshRasterizer( | |
| cameras=camera, raster_settings=self.raster_settings_mesh) | |
| if bg == "black": | |
| blendparam = BlendParams(1e-4, 1e-4, (0.0, 0.0, 0.0)) | |
| elif bg == "white": | |
| blendparam = BlendParams(1e-4, 1e-8, (1.0, 1.0, 1.0)) | |
| elif bg == "gray": | |
| blendparam = BlendParams(1e-4, 1e-8, (0.5, 0.5, 0.5)) | |
| if type == "ori_mesh": | |
| lights = PointLights( | |
| device=self.device, | |
| ambient_color=((0.8, 0.8, 0.8), ), | |
| diffuse_color=((0.2, 0.2, 0.2), ), | |
| specular_color=((0.0, 0.0, 0.0), ), | |
| location=[[0.0, 200.0, 0.0]], | |
| ) | |
| self.renderer = MeshRenderer( | |
| rasterizer=self.meshRas, | |
| shader=SoftPhongShader( | |
| device=self.device, | |
| cameras=camera, | |
| lights=None, | |
| blend_params=blendparam, | |
| ), | |
| ) | |
| if type == "silhouette": | |
| self.raster_settings_silhouette = RasterizationSettings( | |
| image_size=self.size, | |
| blur_radius=np.log(1.0 / 1e-4 - 1.0) * 5e-5, | |
| faces_per_pixel=50, | |
| cull_backfaces=True, | |
| ) | |
| self.silhouetteRas = MeshRasterizer( | |
| cameras=camera, | |
| raster_settings=self.raster_settings_silhouette) | |
| self.renderer = MeshRenderer(rasterizer=self.silhouetteRas, | |
| shader=SoftSilhouetteShader()) | |
| if type == "pointcloud": | |
| self.raster_settings_pcd = PointsRasterizationSettings( | |
| image_size=self.size, radius=0.006, points_per_pixel=10) | |
| self.pcdRas = PointsRasterizer( | |
| cameras=camera, raster_settings=self.raster_settings_pcd) | |
| self.renderer = PointsRenderer( | |
| rasterizer=self.pcdRas, | |
| compositor=AlphaCompositor(background_color=(0, 0, 0)), | |
| ) | |
| if type == "clean_mesh": | |
| self.renderer = MeshRenderer( | |
| rasterizer=self.meshRas, | |
| shader=cleanShader(device=self.device, | |
| cameras=camera, | |
| blend_params=blendparam), | |
| ) | |
| def VF2Mesh(self, verts, faces, vertex_texture = None): | |
| if not torch.is_tensor(verts): | |
| verts = torch.tensor(verts) | |
| if not torch.is_tensor(faces): | |
| faces = torch.tensor(faces) | |
| if verts.ndimension() == 2: | |
| verts = verts.unsqueeze(0).float() | |
| if faces.ndimension() == 2: | |
| faces = faces.unsqueeze(0).long() | |
| verts = verts.to(self.device) | |
| faces = faces.to(self.device) | |
| if vertex_texture is not None: | |
| vertex_texture = vertex_texture.to(self.device) | |
| mesh = Meshes(verts, faces).to(self.device) | |
| if vertex_texture is None: | |
| mesh.textures = TexturesVertex( | |
| verts_features=(mesh.verts_normals_padded() + 1.0) * 0.5)#modify | |
| else: | |
| mesh.textures = TexturesVertex( | |
| verts_features = vertex_texture.unsqueeze(0))#modify | |
| return mesh | |
| def load_meshes(self, verts, faces,offset=None, vertex_texture = None): | |
| """load mesh into the pytorch3d renderer | |
| Args: | |
| verts ([N,3]): verts | |
| faces ([N,3]): faces | |
| offset ([N,3]): offset | |
| """ | |
| if offset is not None: | |
| verts = verts + offset | |
| if isinstance(verts, list): | |
| self.meshes = [] | |
| for V, F in zip(verts, faces): | |
| if vertex_texture is None: | |
| self.meshes.append(self.VF2Mesh(V, F)) | |
| else: | |
| self.meshes.append(self.VF2Mesh(V, F, vertex_texture)) | |
| else: | |
| if vertex_texture is None: | |
| self.meshes = [self.VF2Mesh(verts, faces)] | |
| else: | |
| self.meshes = [self.VF2Mesh(verts, faces, vertex_texture)] | |
| def get_depth_map(self, cam_ids=[0, 2]): | |
| depth_maps = [] | |
| for cam_id in cam_ids: | |
| self.init_renderer(self.get_camera(cam_id), "clean_mesh", "gray") | |
| fragments = self.meshRas(self.meshes[0]) | |
| depth_map = fragments.zbuf[..., 0].squeeze(0) | |
| if cam_id == 2: | |
| depth_map = torch.fliplr(depth_map) | |
| depth_maps.append(depth_map) | |
| return depth_maps | |
| def get_rgb_image(self, cam_ids=[0, 2], bg='gray'): | |
| images = [] | |
| for cam_id in range(len(self.cam_pos)): | |
| if cam_id in cam_ids: | |
| self.init_renderer(self.get_camera(cam_id), "clean_mesh", bg) | |
| if len(cam_ids) == 4: | |
| rendered_img = (self.renderer( | |
| self.meshes[0])[0:1, :, :, :3].permute(0, 3, 1, 2) - | |
| 0.5) * 2.0 | |
| else: | |
| rendered_img = (self.renderer( | |
| self.meshes[0])[0:1, :, :, :3].permute(0, 3, 1, 2) - | |
| 0.5) * 2.0 | |
| if cam_id == 2 and len(cam_ids) == 2: | |
| rendered_img = torch.flip(rendered_img, dims=[3]) | |
| images.append(rendered_img) | |
| return images | |
| def get_rendered_video(self, images, save_path): | |
| self.cam_pos = [] | |
| for angle in range(360): | |
| self.cam_pos.append(( | |
| 100.0 * math.cos(np.pi / 180 * angle), | |
| self.mesh_y_center, | |
| 100.0 * math.sin(np.pi / 180 * angle), | |
| )) | |
| old_shape = np.array(images[0].shape[:2]) | |
| new_shape = np.around( | |
| (self.size / old_shape[0]) * old_shape).astype(np.int) | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| video = cv2.VideoWriter(save_path, fourcc, 10, | |
| (self.size * len(self.meshes) + | |
| new_shape[1] * len(images), self.size)) | |
| pbar = tqdm(range(len(self.cam_pos))) | |
| pbar.set_description( | |
| colored(f"exporting video {os.path.basename(save_path)}...", | |
| "blue")) | |
| for cam_id in pbar: | |
| self.init_renderer(self.get_camera(cam_id), "clean_mesh", "gray") | |
| img_lst = [ | |
| np.array(Image.fromarray(img).resize(new_shape[::-1])).astype( | |
| np.uint8)[:, :, [2, 1, 0]] for img in images | |
| ] | |
| for mesh in self.meshes: | |
| rendered_img = ((self.renderer(mesh)[0, :, :, :3] * | |
| 255.0).detach().cpu().numpy().astype( | |
| np.uint8)) | |
| img_lst.append(rendered_img) | |
| final_img = np.concatenate(img_lst, axis=1) | |
| video.write(final_img) | |
| video.release() | |
| self.reload_cam() | |
| def get_silhouette_image(self, cam_ids=[0, 2]): | |
| images = [] | |
| for cam_id in range(len(self.cam_pos)): | |
| if cam_id in cam_ids: | |
| self.init_renderer(self.get_camera(cam_id), "silhouette") | |
| rendered_img = self.renderer(self.meshes[0])[0:1, :, :, 3] | |
| if cam_id == 2 and len(cam_ids) == 2: | |
| rendered_img = torch.flip(rendered_img, dims=[2]) | |
| images.append(rendered_img) | |
| return images | |