Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| import os | |
| import shutil | |
| import tempfile | |
| import gradio as gr | |
| from PIL import Image | |
| from rembg import remove | |
| import sys | |
| import uuid | |
| import subprocess | |
| from glob import glob | |
| import requests | |
| from huggingface_hub import snapshot_download | |
| # Download models | |
| os.makedirs("ckpts", exist_ok=True) | |
| snapshot_download( | |
| repo_id = "pengHTYX/PSHuman_Unclip_768_6views", | |
| local_dir = "./ckpts" | |
| ) | |
| os.makedirs("smpl_related", exist_ok=True) | |
| snapshot_download( | |
| repo_id = "fffiloni/PSHuman-SMPL-related", | |
| local_dir = "./smpl_related" | |
| ) | |
| # Folder containing example images | |
| examples_folder = "examples" | |
| # Retrieve all file paths in the folder | |
| images_examples = [ | |
| os.path.join(examples_folder, file) | |
| for file in os.listdir(examples_folder) | |
| if os.path.isfile(os.path.join(examples_folder, file)) | |
| ] | |
| def remove_background(input_url): | |
| # Create a temporary folder for downloaded and processed images | |
| temp_dir = tempfile.mkdtemp() | |
| # Download the image from the URL | |
| image_path = os.path.join(temp_dir, 'input_image.png') | |
| try: | |
| image = Image.open(input_url) | |
| flipped_image = image.transpose(Image.FLIP_LEFT_RIGHT) # Mirror-flip the image | |
| flipped_image.save(image_path) | |
| except Exception as e: | |
| shutil.rmtree(temp_dir) | |
| return f"Error downloading or saving the image: {str(e)}" | |
| # Run background removal | |
| try: | |
| unique_id = str(uuid.uuid4()) | |
| removed_bg_path = os.path.join(temp_dir, f'output_image_rmbg_{unique_id}.png') | |
| img = Image.open(image_path) | |
| result = remove(img) | |
| result.save(removed_bg_path) | |
| # Remove the input image to keep the temp directory clean | |
| os.remove(image_path) | |
| except Exception as e: | |
| shutil.rmtree(temp_dir) | |
| return f"Error removing background: {str(e)}" | |
| return removed_bg_path, temp_dir | |
| def run_inference(temp_dir, removed_bg_path): | |
| # Define the inference configuration | |
| inference_config = "configs/inference-768-6view.yaml" | |
| pretrained_model = "./ckpts" | |
| crop_size = 740 | |
| seed = 600 | |
| num_views = 7 | |
| save_mode = "rgb" | |
| try: | |
| # Run the inference command | |
| subprocess.run( | |
| [ | |
| "python", "inference.py", | |
| "--config", inference_config, | |
| f"pretrained_model_name_or_path={pretrained_model}", | |
| f"validation_dataset.crop_size={crop_size}", | |
| f"with_smpl=false", | |
| f"validation_dataset.root_dir={temp_dir}", | |
| f"seed={seed}", | |
| f"num_views={num_views}", | |
| f"save_mode={save_mode}" | |
| ], | |
| check=True | |
| ) | |
| # Retrieve the file name without the extension | |
| removed_bg_file_name = os.path.splitext(os.path.basename(removed_bg_path))[0] | |
| output_videos = glob(os.path.join(f"out/{removed_bg_file_name}", "*.mp4")) | |
| return output_videos | |
| except subprocess.CalledProcessError as e: | |
| return f"Error during inference: {str(e)}" | |
| def process_image(input_url): | |
| # Remove background | |
| result = remove_background(input_url) | |
| if isinstance(result, str) and result.startswith("Error"): | |
| raise gr.Error(f"{result}") # Return the error message if something went wrong | |
| removed_bg_path, temp_dir = result # Unpack only if successful | |
| # Run inference | |
| output_video = run_inference(temp_dir, removed_bg_path) | |
| if isinstance(output_video, str) and output_video.startswith("Error"): | |
| shutil.rmtree(temp_dir) | |
| raise gr.Error(f"{output_images}") # Return the error message if inference failed | |
| shutil.rmtree(temp_dir) # Cleanup temporary folder | |
| print(output_video) | |
| return output_video[0] | |
| def gradio_interface(): | |
| with gr.Blocks() as app: | |
| gr.Markdown("# PSHuman: Photorealistic Single-image 3D Human Reconstruction using Cross-Scale Multiview Diffusion and Explicit Remeshing") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| input_image = gr.Image( | |
| label="Image input", | |
| type="filepath", | |
| height=240 | |
| ) | |
| submit_button = gr.Button("Process") | |
| gr.Examples( | |
| examples = examples_folder, | |
| inputs = [input_image], | |
| examples_per_page = 6 | |
| ) | |
| output_video= gr.Video(label="Output Video", scale=3) | |
| submit_button.click(process_image, inputs=[input_image], outputs=[output_video]) | |
| return app | |
| # Launch the Gradio app | |
| app = gradio_interface() | |
| app.launch() | |