Spaces:
Running
Running
| from contextlib import contextmanager | |
| import torch | |
| def init_weights_on_device(device=torch.device("meta"), include_buffers: bool = False): | |
| old_register_parameter = torch.nn.Module.register_parameter | |
| if include_buffers: | |
| old_register_buffer = torch.nn.Module.register_buffer | |
| def register_empty_parameter(module, name, param): | |
| old_register_parameter(module, name, param) | |
| if param is not None: | |
| param_cls = type(module._parameters[name]) | |
| kwargs = module._parameters[name].__dict__ | |
| kwargs["requires_grad"] = param.requires_grad | |
| module._parameters[name] = param_cls( | |
| module._parameters[name].to(device), **kwargs | |
| ) | |
| def register_empty_buffer(module, name, buffer, persistent=True): | |
| old_register_buffer(module, name, buffer, persistent=persistent) | |
| if buffer is not None: | |
| module._buffers[name] = module._buffers[name].to(device) | |
| def patch_tensor_constructor(fn): | |
| def wrapper(*args, **kwargs): | |
| kwargs["device"] = device | |
| return fn(*args, **kwargs) | |
| return wrapper | |
| if include_buffers: | |
| tensor_constructors_to_patch = { | |
| torch_function_name: getattr(torch, torch_function_name) | |
| for torch_function_name in ["empty", "zeros", "ones", "full"] | |
| } | |
| else: | |
| tensor_constructors_to_patch = {} | |
| try: | |
| torch.nn.Module.register_parameter = register_empty_parameter | |
| if include_buffers: | |
| torch.nn.Module.register_buffer = register_empty_buffer | |
| for torch_function_name in tensor_constructors_to_patch.keys(): | |
| setattr( | |
| torch, | |
| torch_function_name, | |
| patch_tensor_constructor(getattr(torch, torch_function_name)), | |
| ) | |
| yield | |
| finally: | |
| torch.nn.Module.register_parameter = old_register_parameter | |
| if include_buffers: | |
| torch.nn.Module.register_buffer = old_register_buffer | |
| for ( | |
| torch_function_name, | |
| old_torch_function, | |
| ) in tensor_constructors_to_patch.items(): | |
| setattr(torch, torch_function_name, old_torch_function) |