File size: 13,723 Bytes
5c013fe
 
 
 
4c61fc9
1de55b1
5c013fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f413f1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe118aa
f413f1e
 
 
 
 
 
 
fe118aa
f413f1e
 
 
 
 
 
 
 
fe118aa
 
 
 
f413f1e
5c013fe
 
 
261120d
faff249
 
5c013fe
dce42cf
faff249
dce42cf
 
faff249
dce42cf
 
faff249
 
dce42cf
faff249
dce42cf
faff249
dce42cf
 
faff249
dce42cf
 
faff249
dce42cf
 
faff249
dce42cf
 
faff249
dce42cf
 
9dd43a2
 
 
 
 
8cac4e1
9dd43a2
dce42cf
faff249
9242a1e
dce42cf
 
 
 
9dd43a2
 
faff249
dce42cf
92741a4
5c013fe
 
 
 
 
 
 
 
 
 
 
 
 
bb4631d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061f3b8
9065d18
061f3b8
 
dce42cf
9065d18
 
 
3d97999
9065d18
 
 
 
 
 
dce42cf
 
9065d18
 
5b9cfc0
 
 
 
 
3d97999
dce42cf
 
 
 
 
 
5b9cfc0
dce42cf
 
3d97999
bb4631d
3d97999
 
 
061f3b8
 
 
 
 
dce42cf
061f3b8
 
 
 
 
 
 
 
 
 
1de55b1
6f44cc5
1de55b1
4cab197
6f44cc5
1de55b1
 
6f44cc5
 
1de55b1
6f44cc5
1de55b1
 
 
 
 
 
4cab197
1de55b1
6f44cc5
1de55b1
6f44cc5
1de55b1
 
6f44cc5
1de55b1
6f44cc5
4cab197
5c013fe
 
 
 
 
 
 
 
 
 
 
 
 
061f3b8
5c013fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
061f3b8
 
1de55b1
 
6f44cc5
f413f1e
6f44cc5
f413f1e
5c013fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e63192b
5c013fe
 
 
061f3b8
f413f1e
5c013fe
f413f1e
5c013fe
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import spaces
import gradio as gr
import re
import os 
import json
from typing import Union
hf_token = os.environ.get('HF_TOKEN')

from gradio_client import Client, handle_file

clipi_client = Client("fffiloni/CLIP-Interrogator-2")

from transformers import AutoTokenizer, AutoModelForCausalLM

model_path = "meta-llama/Llama-2-7b-chat-hf"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False, use_auth_token=hf_token)
model = AutoModelForCausalLM.from_pretrained(model_path, use_auth_token=hf_token).half().cuda()

#client = Client("https://fffiloni-test-llama-api-debug.hf.space/", hf_token=hf_token)

clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")

# FLUX

import numpy as np
import random
import torch
from diffusers import  DiffusionPipeline, FlowMatchEulerDiscreteScheduler, AutoencoderTiny, AutoencoderKL
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
torch.cuda.empty_cache()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

#pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)

@spaces.GPU
def infer_flux(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator().manual_seed(seed)
    
    img = pipe(
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
            output_type="pil",
            good_vae=good_vae,
        ).images[0]

    img.save("flux-dev.png")
    return "flux-dev.png"

@spaces.GPU
def llama_gen_fragrance(scene):

    instruction = """[INST] <<SYS>>\n
You are a poetic perfumer. Your role is to create the imaginary scent of a described scene.
You must always respond using the following structure:
---
Perfume Name:
An original, evocative, and unique name — in French or English.

Tagline:
A short, poetic sentence — like a perfume advertisement hook.

Poetic Olfactory Description:
A freeform and expressive description of the scent ambiance evoked by the scene. Use rich sensory, emotional, and metaphorical language. Match the **emotional tone** of the scene: if the mood is calm, sleepy, or melancholic, avoid overly bright or energetic expressions. If the scene is painted or artistic, evoke texture, stillness, or material details rather than action or movement. Be subtle and precise.
**Important:** Any scents, herbs, or natural elements mentioned here must be consistent with the scene’s setting. Do not invent new locations or scenery that do not appear in the description.

Olfactory Pyramid (technical):
- Top Notes:
List 3–4 real, concrete scent materials that would be perceived first. These must be plausible fragrance ingredients (e.g. herbs, resins, citrus peels, spices, aldehydes, etc.). Pick notes that reflect the **real mood, climate, and setting** of the scene. Do not add locations or elements that don’t appear in the scene. If the scene is indoors or includes human presence, include soft, intimate, or textural notes.

- Heart Notes:
List 3–4 real fragrance elements that give body and soul to the perfume. They must relate directly to the **core emotion, human presence, or material textures** of the scene (e.g. warm fabric, skin, dry flowers, books, wood, canvas). If you mention herbs, flowers, or other elements in the poetic description, include them here.

- Base Notes:
List 3–4 real, longer-lasting ingredients such as woods, musks, resins, or earthy accords. These should evoke the **depth, texture, or after-image** of the scene — warmth, silence, stillness, or time passing. Avoid generic bases unless they fit the mood. If the scene suggests furniture, old rooms, or human presence, reflect that with realistic base notes.

Consistency Rule:
The top, heart, and base notes must not introduce new ideas, plants, or places that were not in the poetic description or the scene. Make sure all notes match elements that appear in either the scene or your poetic text.

General Atmosphere:
Summarize the fragrance’s evolution and overall emotional impression. Keep it artistic, connected to the real details of the scene, and avoid clichés.

Image Description (for marketing visuals):
Describe an imagined marketing image that captures the perfume’s essence. **Begin your description by focusing exclusively on the perfume bottle as the single and main subject.**  
Describe the bottle’s shape, glass texture, cap, and label — the label must clearly display the exact **Perfume Name** generated in this output.  
Specify the typography style used on the label text, ensuring it reflects the perfume’s mood and story (for example, elegant script for romantic scents, bold sans-serif for modern ones, vintage serif for nostalgic fragrances).  
The bottle must be visually dominant and centrally placed, occupying most of the image frame, shown in sharp focus and fine detail.  
The background should be minimal, abstract, or atmospheric — such as gradients, soft light, fabric textures, or mist — with **no depiction of people, animals, symbols, or narrative scenes.**  
Do not mention or describe any human figures, characters, or storytelling elements unrelated to the bottle design itself.  
Use cinematic luxury advertising codes: refined shadows, soft directional lighting, elegant minimalism, and a product-hero perspective.

---
Always ensure that:
– The fragrance matches the mood and visual setting of the scene
– All ingredients are real, plausible, and fit together naturally
– No invented scenery or extra context is added
– The poetic description and pyramid share the same notes and details
– The image description **must mention the exact Perfume Name on the label**, and **focus exclusively on the perfume bottle as the main subject**  
– No humans, animals, narrative scenes, or symbolic objects unrelated to the bottle design are described
– Each perfume feels unique and consistent

Here is the scene description to analyze:
\n<</SYS>>\n\n{} [/INST]"""

    
    prompt = instruction.format(scene)
    
    generate_ids = model.generate(tokenizer(prompt, return_tensors='pt').input_ids.cuda(), max_new_tokens=4096)
    output_text = tokenizer.decode(generate_ids[0], skip_special_tokens=True)
    #print(generate_ids)
    #print(output_text)
    pattern = r'\[INST\].*?\[/INST\]'
    cleaned_text = re.sub(pattern, '', output_text, flags=re.DOTALL)
    return cleaned_text

def extract_notes(text, section_name):
    import re

    # 1. Try block of bullets
    pattern_block = rf'{section_name}:\s*\n((?:\*.*(?:\n|$))+)'
    match_block = re.search(pattern_block, text, re.MULTILINE)
    if match_block:
        notes_text = match_block.group(1)
        notes = []
        for line in notes_text.strip().splitlines():
            bullet = line.strip().lstrip('*').strip()
            if ':' in bullet:
                note, desc = bullet.split(':', 1)
                notes.append({'note': note.strip(), 'description': desc.strip()})
            else:
                notes.append({'note': bullet, 'description': ''})
        return notes

    # 2. Try inline bullet style: * Section: item1, item2, item3
    pattern_inline = rf'\* {section_name}:\s*(.+)'
    match_inline = re.search(pattern_inline, text)
    if match_inline:
        notes_raw = match_inline.group(1).strip()
        notes = []
        for item in notes_raw.split(','):
            notes.append({'note': item.strip(), 'description': ''})
        return notes

    # 3. Try plain line style: Section: item1, item2, item3 (no bullet)
    pattern_line = rf'^{section_name}:\s*(.+)$'
    match_line = re.search(pattern_line, text, re.MULTILINE)
    if match_line:
        notes_raw = match_line.group(1).strip()
        notes = []
        for item in notes_raw.split(','):
            notes.append({'note': item.strip(), 'description': ''})
        return notes

    return []

def parse_perfume_description(text: str) -> dict:
    # Perfume Name
    perfume_name = re.search(r'Perfume Name:\s*(.+)', text).group(1).strip()

    # Tagline (quoted)
    tagline = re.search(r'Tagline:\s*"(.*?)"', text, re.DOTALL)
    tagline = tagline.group(1).strip() if tagline else ""

    # Poetic Olfactory Description
    poetic_desc_match = re.search(
        r'Poetic Olfactory Description:\s*"(.*?)"', text, re.DOTALL)
    if poetic_desc_match:
        poetic_desc = poetic_desc_match.group(1).strip()
    else:
        poetic_desc_match = re.search(
            r'Poetic Olfactory Description:\s*(.*?)\s*(Olfactory Pyramid:|Image Description:|General Atmosphere:)', 
            text, re.DOTALL)
        poetic_desc = poetic_desc_match.group(1).strip() if poetic_desc_match else ""

    # General Atmosphere: stop at Image Description if present
    general_atmosphere_match = re.search(
        r'General Atmosphere:\s*(.*?)(?:\s*Image Description:|$)', text, re.DOTALL)
    general_atmosphere = general_atmosphere_match.group(1).strip() if general_atmosphere_match else ""

    # Image Description
    image_desc_match = re.search(
        r'Image Description:\s*"(.*?)"', text, re.DOTALL)
    if image_desc_match:
        image_desc = image_desc_match.group(1).strip()
    else:
        image_desc_match = re.search(
            r'Image Description:\s*(.*?)$', text, re.DOTALL)
        image_desc = image_desc_match.group(1).strip() if image_desc_match else ""

    # 🗂️ Smart bullet extractor
    
    top_notes = extract_notes(text, 'Top Notes')
    heart_notes = extract_notes(text, 'Heart Notes')
    base_notes = extract_notes(text, 'Base Notes')

    result = {
        'Perfume Name': perfume_name,
        'Tagline': tagline,
        'Poetic Olfactory Description': poetic_desc,
        'Image Description': image_desc,
        'Olfactory Pyramid': {
            'Top Notes': top_notes,
            'Heart Notes': heart_notes,
            'Base Notes': base_notes
        },
        'General Atmosphere': general_atmosphere
    }

    return result

def extract_field(data: Union[str, dict], field_name: str) -> str:
    """
    Extracts a specific field value from a JSON string or Python dict.

    Args:
        data (Union[str, dict]): The JSON string or dict to extract from.
        field_name (str): The exact field name to extract.

    Returns:
        str: The extracted field value as a string.
    """
    if isinstance(data, str):
        try:
            data = json.loads(data)
        except json.JSONDecodeError:
            raise ValueError("Invalid JSON string provided")

    if not isinstance(data, dict):
        raise TypeError("Input must be a dict or a valid JSON string")

    value = data.get(field_name) or data.get(field_name.lower()) or None

    if value is None:
        raise KeyError(f"No field named '{field_name}' found in the data")

    return str(value).strip()


def get_text_after_colon(input_text):
    # Find the first occurrence of ":"
    colon_index = input_text.find(":")
    
    # Check if ":" exists in the input_text
    if colon_index != -1:
        # Extract the text after the colon
        result_text = input_text[colon_index + 1:].strip()
        return result_text
    else:
        # Return the original text if ":" is not found
        return input_text

def infer(image_input):

    gr.Info('Calling CLIP Interrogator ...')

    clipi_result = clipi_client.predict(
		image=handle_file(image_input),
		mode="best",
		best_max_flavors=4,
		api_name="/clipi2"
    )
    print(clipi_result)

    llama_q = clipi_result
    
    gr.Info('Calling Llama2 ...')
    result = llama_gen_fragrance(llama_q)

    print(f"Llama2 result: {result}")

    parsed = parse_perfume_description(result)

    image_desc = extract_field(parsed, "Image Description")

    print(image_desc)
    gen_bottle = infer_flux(image_desc)

    return result, parsed, gen_bottle

css="""
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            <h1 style="text-align: center">Image to Fragrance</h1>
            <p style="text-align: center">Upload an image, get a pro fragrance idea made by Llama2 !</p>
            """
        )
        with gr.Row():
            with gr.Column():
                image_in = gr.Image(label="Image input", type="filepath", elem_id="image-in")
                
                submit_btn = gr.Button('Give me a Fragrance')
            with gr.Column():
                #caption = gr.Textbox(label="Generated Caption")
                fragrance = gr.Textbox(label="generated Fragrance", elem_id="fragrance")
                json_res = gr.JSON(label="JSON")
                bottle_res = gr.Image(label="Flacon")
        
    submit_btn.click(fn=infer, inputs=[image_in], outputs=[fragrance, json_res, bottle_res])

demo.queue(max_size=12).launch(ssr_mode=False, mcp_server=True)