Spaces:
Running
Running
load models only if cuda available
Browse files
app.py
CHANGED
@@ -21,29 +21,31 @@ from huggingface_hub import hf_hub_download
|
|
21 |
# Ensure 'checkpoint' directory exists
|
22 |
os.makedirs("checkpoints", exist_ok=True)
|
23 |
|
24 |
-
|
25 |
-
hf_hub_download(
|
26 |
-
repo_id="wenqsun/DimensionX",
|
27 |
-
filename="orbit_left_lora_weights.safetensors",
|
28 |
-
local_dir="checkpoints"
|
29 |
-
)
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
# Load models in the global scope
|
38 |
-
model_id = "THUDM/CogVideoX-5b-I2V"
|
39 |
-
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cpu")
|
40 |
-
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cpu")
|
41 |
-
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cpu")
|
42 |
-
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
43 |
-
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
|
44 |
|
45 |
-
# Add this near the top after imports
|
46 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
47 |
|
48 |
def calculate_resize_dimensions(width, height, max_width=1024):
|
49 |
"""Calculate new dimensions maintaining aspect ratio"""
|
|
|
21 |
# Ensure 'checkpoint' directory exists
|
22 |
os.makedirs("checkpoints", exist_ok=True)
|
23 |
|
24 |
+
if not is_shared_ui and is_gpu_associated:
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
# Download LoRA weights
|
27 |
+
hf_hub_download(
|
28 |
+
repo_id="wenqsun/DimensionX",
|
29 |
+
filename="orbit_left_lora_weights.safetensors",
|
30 |
+
local_dir="checkpoints"
|
31 |
+
)
|
32 |
+
|
33 |
+
hf_hub_download(
|
34 |
+
repo_id="wenqsun/DimensionX",
|
35 |
+
filename="orbit_up_lora_weights.safetensors",
|
36 |
+
local_dir="checkpoints"
|
37 |
+
)
|
38 |
|
39 |
+
# Load models in the global scope
|
40 |
+
model_id = "THUDM/CogVideoX-5b-I2V"
|
41 |
+
transformer = CogVideoXTransformer3DModel.from_pretrained(model_id, subfolder="transformer", torch_dtype=torch.float16).to("cpu")
|
42 |
+
text_encoder = T5EncoderModel.from_pretrained(model_id, subfolder="text_encoder", torch_dtype=torch.float16).to("cpu")
|
43 |
+
vae = AutoencoderKLCogVideoX.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float16).to("cpu")
|
44 |
+
tokenizer = T5Tokenizer.from_pretrained(model_id, subfolder="tokenizer")
|
45 |
+
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_id, tokenizer=tokenizer, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=torch.float16)
|
46 |
|
47 |
+
# Add this near the top after imports
|
48 |
+
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'expandable_segments:True'
|
49 |
|
50 |
def calculate_resize_dimensions(width, height, max_width=1024):
|
51 |
"""Calculate new dimensions maintaining aspect ratio"""
|