File size: 5,202 Bytes
cb41d64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import threading
import time

# Global variables for model and tokenizer
model = None
tokenizer = None
model_loaded = False

def load_model():
    """Load the model and tokenizer"""
    global model, tokenizer, model_loaded
    try:
        print("Loading Prompt Generator model...")
        tokenizer = AutoTokenizer.from_pretrained("UnfilteredAI/Promt-generator")
        model = AutoModelForCausalLM.from_pretrained(
            "UnfilteredAI/Promt-generator",
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
        ).to("cuda" if torch.cuda.is_available() else "cpu")
        
        model_loaded = True
        print("Prompt Generator model loaded successfully!")
    except Exception as e:
        print(f"Error loading model: {e}")
        model_loaded = False

def generate_prompt(input_text, max_length, temperature, top_p, num_return_sequences):
    """Generate enhanced prompts from input text"""
    global model, tokenizer, model_loaded
    
    if not model_loaded:
        return "模型尚未加载完成,请稍等..."
    
    if not input_text.strip():
        return "请输入一些文本作为提示词的起始内容。"
    
    try:
        # Tokenize input
        inputs = tokenizer(input_text, return_tensors="pt")
        if torch.cuda.is_available():
            inputs = inputs.to("cuda")
        
        # Generate
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_length=max_length,
                temperature=temperature,
                top_p=top_p,
                do_sample=True,
                num_return_sequences=num_return_sequences,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
        
        # Decode generated prompts
        generated_prompts = []
        for output in outputs:
            generated_text = tokenizer.decode(output, skip_special_tokens=True)
            generated_prompts.append(generated_text)
        
        return "\n\n---\n\n".join(generated_prompts)
        
    except Exception as e:
        return f"生成提示词时出错: {str(e)}"

def clear_output():
    """Clear the output"""
    return ""

# Load model in background
loading_thread = threading.Thread(target=load_model)
loading_thread.start()

# Create Gradio interface
with gr.Blocks(title="AI Prompt Generator") as demo:
    gr.Markdown("# 🎨 AI Prompt Generator")
    gr.Markdown("基于 UnfilteredAI/Promt-generator 模型的智能提示词生成器")
    
    with gr.Row():
        with gr.Column(scale=2):
            input_text = gr.Textbox(
                label="输入起始文本",
                placeholder="例如: a red car, beautiful landscape, futuristic city...",
                lines=3
            )
            
            with gr.Row():
                generate_btn = gr.Button("生成提示词", variant="primary", scale=2)
                clear_btn = gr.Button("清空", scale=1)
            
            output_text = gr.Textbox(
                label="生成的提示词",
                lines=10,
                max_lines=20,
                show_copy_button=True
            )
        
        with gr.Column(scale=1):
            gr.Markdown("### 生成参数")
            
            max_length = gr.Slider(
                minimum=50,
                maximum=500,
                value=150,
                step=10,
                label="最大长度"
            )
            
            temperature = gr.Slider(
                minimum=0.1,
                maximum=2.0,
                value=0.8,
                step=0.1,
                label="Temperature (创造性)"
            )
            
            top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.9,
                step=0.05,
                label="Top-p (多样性)"
            )
            
            num_return_sequences = gr.Slider(
                minimum=1,
                maximum=5,
                value=3,
                step=1,
                label="生成数量"
            )
            
            gr.Markdown("### 使用说明")
            gr.Markdown(
                """- **输入起始文本**: 描述你想要的内容主题
- **Temperature**: 控制生成的随机性,越高越有创意
- **Top-p**: 控制词汇选择的多样性
- **生成数量**: 一次生成多个不同的提示词"""
            )
    
    # Event handlers
    generate_btn.click(
        generate_prompt,
        inputs=[input_text, max_length, temperature, top_p, num_return_sequences],
        outputs=output_text
    )
    
    input_text.submit(
        generate_prompt,
        inputs=[input_text, max_length, temperature, top_p, num_return_sequences],
        outputs=output_text
    )
    
    clear_btn.click(
        clear_output,
        outputs=output_text
    )

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7861,
        share=False,
        show_error=True
    )