Spaces:
Configuration error
Configuration error
File size: 3,055 Bytes
8f3dcc9 ec4d8ae 8f3dcc9 ec4d8ae 8f3dcc9 42343e0 ec4d8ae 8f3dcc9 ec4d8ae 8f3dcc9 ec4d8ae 8f3dcc9 ec4d8ae 8f3dcc9 42343e0 8f3dcc9 ec4d8ae 8f3dcc9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
from __future__ import annotations
from typing import TYPE_CHECKING, Annotated
from fastapi import (
APIRouter,
HTTPException,
Path,
)
import huggingface_hub
from faster_whisper_server.api_models import (
ListModelsResponse,
Model,
)
if TYPE_CHECKING:
from huggingface_hub.hf_api import ModelInfo
router = APIRouter()
@router.get("/v1/models")
def get_models() -> ListModelsResponse:
models = huggingface_hub.list_models(library="ctranslate2", tags="automatic-speech-recognition", cardData=True)
models = list(models)
models.sort(key=lambda model: model.downloads or -1, reverse=True)
transformed_models: list[Model] = []
for model in models:
assert model.created_at is not None
assert model.card_data is not None
assert model.card_data.language is None or isinstance(model.card_data.language, str | list)
if model.card_data.language is None:
language = []
elif isinstance(model.card_data.language, str):
language = [model.card_data.language]
else:
language = model.card_data.language
transformed_model = Model(
id=model.id,
created=int(model.created_at.timestamp()),
object_="model",
owned_by=model.id.split("/")[0],
language=language,
)
transformed_models.append(transformed_model)
return ListModelsResponse(data=transformed_models)
@router.get("/v1/models/{model_name:path}")
# NOTE: `examples` doesn't work https://github.com/tiangolo/fastapi/discussions/10537
def get_model(
model_name: Annotated[str, Path(example="Systran/faster-distil-whisper-large-v3")],
) -> Model:
models = huggingface_hub.list_models(
model_name=model_name, library="ctranslate2", tags="automatic-speech-recognition", cardData=True
)
models = list(models)
models.sort(key=lambda model: model.downloads or -1, reverse=True)
if len(models) == 0:
raise HTTPException(status_code=404, detail="Model doesn't exists")
exact_match: ModelInfo | None = None
for model in models:
if model.id == model_name:
exact_match = model
break
if exact_match is None:
raise HTTPException(
status_code=404,
detail=f"Model doesn't exists. Possible matches: {', '.join([model.id for model in models])}",
)
assert exact_match.created_at is not None
assert exact_match.card_data is not None
assert exact_match.card_data.language is None or isinstance(exact_match.card_data.language, str | list)
if exact_match.card_data.language is None:
language = []
elif isinstance(exact_match.card_data.language, str):
language = [exact_match.card_data.language]
else:
language = exact_match.card_data.language
return Model(
id=exact_match.id,
created=int(exact_match.created_at.timestamp()),
object_="model",
owned_by=exact_match.id.split("/")[0],
language=language,
)
|