import gradio as gr import os import openai from llama_index.core import VectorStoreIndex, StorageContext, load_index_from_storage from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings openai.api_key = os.environ['OpenAI_ApiKey'] Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") # documents = SimpleDirectoryReader("data").load_data() # index = VectorStoreIndex.from_documents(documents) persist_dir = "index" storage_context = StorageContext.from_defaults(persist_dir=persist_dir) index = load_index_from_storage(storage_context) query_engine = index.as_query_engine() def greet(question): # return f"Hello, {question} !" return query_engine.query(question) question_textbox = gr.Textbox(label="Your question") answer_textbox = gr.Textbox(label="Answer") demo = gr.Interface(fn=greet, inputs=question_textbox, outputs=answer_textbox) demo.launch()