import gradio as gr import os import openai from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.embeddings.huggingface import HuggingFaceEmbedding from llama_index.core import Settings import logging # Configure logging logging.basicConfig( level=logging.INFO, # Set the logging level format='%(asctime)s - %(levelname)s - %(message)s', # Define the log format handlers=[ logging.StreamHandler() # Output logs to the console ] ) openai.api_key = os.environ['OpenAI_ApiKey'] Settings.embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5") logging.info("Start load document.") documents = SimpleDirectoryReader("data").load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() def greet(question): return question # return query_engine.query(question) demo = gr.Interface(fn=greet, inputs="text", outputs="text") demo.launch()