# -*- encoding: utf-8 -*- ''' Copyright 2022 The International Digital Economy Academy (IDEA). CCNL team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @File : GAVAEModel.py @Time : 2022/11/04 11:35 @Author : Liang Yuxin @Version : 1.0 @Contact : liangyuxin@idea.edu.cn @License : (C)Copyright 2022-2023, CCNL-IDEA ''' import torch from transformers.modeling_utils import PreTrainedModel from transformers.configuration_utils import PretrainedConfig from fengshen.models.DAVAE.DAVAEModel import DAVAEModel from fengshen.models.GAVAE.gans_model import gans_process device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class GAVAEPretrainedModel(PreTrainedModel): def _init_weights(self, module): """ Initialize the weights """ pass # to bypass the not implement error class GAVAEModel(GAVAEPretrainedModel): config_class = PretrainedConfig def __init__(self, config:PretrainedConfig) -> None: super().__init__(config) self.config =config config.device = device self.gan = gans_process(self.config) self.vae_model = DAVAEModel(self.config) def train_gan(self,encoder_tokenizer,decoder_tokenizer,input_texts): self.vae_model.set_tokenizers(encoder_tokenizer,decoder_tokenizer) n = len(input_texts) inputs_latents = self.vae_model.latent_code_from_text_batch(input_texts) well_trained_gan = False while not well_trained_gan: self.gan_training(inputs_latents) latent = torch.tensor(self.gan.gen_test(n)) if not latent.isnan().any(): well_trained_gan = True def generate(self,n): latent_z = torch.tensor(self.gan.gen_test(n)).to(device) text = self.vae_model.text_from_latent_code_batch(latent_z,prompt=None) return text def gan_training(self,inputs_latents): for gt in range(self.config.gan_epoch): x_train,y_train,x_test,y_test,perm = self.gan.ready_cls(inputs_latents) # sent_output:latent_z inputs_labels:id of class label self.gan.cls_train(x_train, y_train) x2_gen, y_gen, s_gen = self.gan.ready_gen(inputs_latents) # s_gen:sent_output self.gan.gen_train(x2_gen, y_gen, s_gen, gt)