|
from transformers import AutoTokenizer, BartForConditionalGeneration, BartConfig |
|
from pytorch_lightning import ( |
|
LightningModule, |
|
Trainer, |
|
) |
|
from pytorch_lightning.callbacks import LearningRateMonitor |
|
from dataclasses import dataclass |
|
import os |
|
import argparse |
|
import torch |
|
import math |
|
import time |
|
from torch.utils.data._utils.collate import default_collate |
|
from fengshen.data.data_utils.mask_utils import create_masked_lm_predictions |
|
from fengshen.data.universal_datamodule import UniversalDataModule |
|
from fengshen.utils import UniversalCheckpoint |
|
from fengshen.models.model_utils import ( |
|
get_total_steps, |
|
configure_optimizers, |
|
add_module_args, |
|
) |
|
import numpy as np |
|
SHOW_DATA = False |
|
|
|
|
|
@ dataclass |
|
class BartCollator: |
|
''' |
|
由input处理成samples,也就是最终模型的输入 |
|
其中主要处理逻辑在__call__里 |
|
包含text infilling和sentence shuffle任务 |
|
''' |
|
tokenizer: None |
|
max_seq_length: 512 |
|
masked_lm_prob: 0.15 |
|
permute_sentence_ratio: 1.0 |
|
content_key: str = 'text' |
|
|
|
def setup(self): |
|
from fengshen.data.data_utils.sentence_split import ChineseSentenceSplitter |
|
self.sentence_split = ChineseSentenceSplitter() |
|
self.np_rng = np.random.RandomState(seed=((int(time.time()) % 2**32))) |
|
inv_vocab = {v: k for k, v in self.tokenizer.vocab.items()} |
|
self.vocab_id_list = list(inv_vocab.keys()) |
|
self.vocab_id_to_token_dict = inv_vocab |
|
import jieba_fast |
|
self.zh_tokenizer = jieba_fast.lcut |
|
seg_tokens = ['。', ';', ';', '!', '!', '?', '?'] |
|
seg_token_ids = [] |
|
for t in seg_tokens: |
|
if t in self.tokenizer.vocab: |
|
seg_token_ids.append(self.tokenizer.vocab[t]) |
|
else: |
|
print('seg_token "{}" not in vocab'.format(t)) |
|
self.seg_token_ids = set(seg_token_ids) |
|
|
|
def permute_sentences(self, source, full_stops, p=1.0): |
|
|
|
sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2 |
|
result = source.clone() |
|
|
|
num_sentences = sentence_ends.size(0) |
|
num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0) |
|
substitutions = torch.randperm(num_sentences)[:num_to_permute] |
|
ordering = torch.arange(0, num_sentences) |
|
ordering[substitutions] = substitutions[torch.randperm(num_to_permute)] |
|
|
|
|
|
index = 1 |
|
for i in ordering: |
|
sentence = source[(sentence_ends[i - 1] if i > 0 else 1): sentence_ends[i]] |
|
result[index: index + sentence.size(0)] = sentence |
|
index += sentence.size(0) |
|
return result |
|
|
|
def __call__(self, samples): |
|
''' |
|
samples: 一个sample长这样{"text": "hello world"} |
|
''' |
|
model_inputs = [] |
|
for s in samples: |
|
sentences = self.sentence_split.tokenize(s[self.content_key]) |
|
tokenized_sentences = [self.tokenizer.convert_tokens_to_ids( |
|
self.tokenizer.tokenize(sent)) for sent in sentences] |
|
if len(tokenized_sentences) == 0: |
|
print('find empty sentence') |
|
continue |
|
|
|
tokens = [self.tokenizer.cls_token_id] |
|
for sent in tokenized_sentences: |
|
for t in sent: |
|
tokens.append(t) |
|
if tokens[-1] != self.tokenizer.sep_token_id: |
|
tokens.append(self.tokenizer.sep_token_id) |
|
|
|
if len(tokens) > self.max_seq_length: |
|
|
|
last_pos = self.max_seq_length - 1 |
|
for i in range(self.max_seq_length - 1, 0, -1): |
|
if tokens[i-1] in self.seg_token_ids: |
|
last_pos = i |
|
break |
|
tokens = tokens[:last_pos] |
|
|
|
tokens.append(self.tokenizer.sep_token_id) |
|
tokens = torch.LongTensor(tokens) |
|
|
|
full_stops = torch.any(torch.stack([torch.eq(tokens, aelem).logical_or_( |
|
torch.eq(tokens, aelem)) for aelem in self.seg_token_ids], dim=0), dim=0) |
|
|
|
assert (self.max_seq_length - |
|
tokens.shape[0]) >= 0, (tokens.size(), tokens[-1], self.max_seq_length) |
|
|
|
source, target = tokens, tokens.clone() |
|
|
|
if self.permute_sentence_ratio > 0.0: |
|
source = self.permute_sentences(source, full_stops, self.permute_sentence_ratio) |
|
|
|
if self.masked_lm_prob > 0.0: |
|
mask_prob = self.masked_lm_prob * 2 |
|
max_predictions_per_seq = mask_prob * len(source) |
|
(source, _, _, _, _) = create_masked_lm_predictions( |
|
source.numpy(), self.vocab_id_list, self.vocab_id_to_token_dict, mask_prob, |
|
self.tokenizer.cls_token_id, self.tokenizer.sep_token_id, self.tokenizer.mask_token_id, |
|
max_predictions_per_seq, self.np_rng, |
|
masking_style='bert', zh_tokenizer=self.zh_tokenizer) |
|
|
|
|
|
span_mask_souce = [] |
|
for t in source: |
|
|
|
if len(span_mask_souce) > 0 \ |
|
and t is self.tokenizer.mask_token_id \ |
|
and span_mask_souce[-1] is self.tokenizer.mask_token_id: |
|
continue |
|
span_mask_souce.append(t) |
|
|
|
source = torch.LongTensor(span_mask_souce) |
|
|
|
assert (source >= 0).all() |
|
|
|
assert (source <= self.tokenizer.vocab_size).all() |
|
assert source[0] == self.tokenizer.cls_token_id |
|
assert source[-1] == self.tokenizer.sep_token_id |
|
|
|
prev_output_tokens = torch.zeros_like(target) |
|
|
|
prev_output_tokens[0] = self.tokenizer.sep_token_id |
|
prev_output_tokens[1:] = target[:-1] |
|
|
|
source_ = torch.full((self.max_seq_length,), |
|
self.tokenizer.pad_token_id, dtype=torch.long) |
|
source_[:source.shape[0]] = source |
|
target_ = torch.full((self.max_seq_length,), -100, dtype=torch.long) |
|
target_[:target.shape[0]] = target |
|
prev_output_tokens_ = torch.full( |
|
(self.max_seq_length,), self.tokenizer.pad_token_id, dtype=torch.long) |
|
prev_output_tokens_[:prev_output_tokens.shape[0]] = prev_output_tokens |
|
attention_mask = torch.full((self.max_seq_length,), 0, dtype=torch.long) |
|
attention_mask[:source.shape[0]] = 1 |
|
model_inputs.append({ |
|
"input_ids": source_, |
|
"labels": target_, |
|
"decoder_input_ids": prev_output_tokens_, |
|
"attention_mask": attention_mask, |
|
}) |
|
return default_collate(model_inputs) |
|
|
|
|
|
class RandengBart(LightningModule): |
|
@staticmethod |
|
def add_module_specific_args(parent_parser): |
|
parser = parent_parser.add_argument_group('Randeng BART') |
|
parser.add_argument('--masked_lm_prob', type=float, default=0.15) |
|
parser.add_argument('--max_seq_length', type=int, default=512) |
|
parser.add_argument('--sample_content_key', type=str, default='text') |
|
parser.add_argument('--permute_sentence_ratio', type=str, default=1.0) |
|
return parent_parser |
|
|
|
def __init__(self, args, tokenizer, **kwargs) -> None: |
|
super().__init__() |
|
self.save_hyperparameters(args) |
|
config = BartConfig.from_pretrained(args.model_path) |
|
self.model = BartForConditionalGeneration(config) |
|
self.tokenizer = tokenizer |
|
|
|
def setup(self, stage) -> None: |
|
if stage == 'fit': |
|
self.total_steps = get_total_steps(self.trainer, self.hparams) |
|
|
|
def configure_optimizers(self): |
|
return configure_optimizers(self) |
|
|
|
def detokenize(self, token_ids): |
|
toks = self.tokenizer.convert_ids_to_tokens(token_ids) |
|
return self.tokenizer.convert_tokens_to_string(toks) |
|
|
|
def training_step(self, batch, batch_idx): |
|
if self.trainer.global_rank == 0: |
|
global SHOW_DATA |
|
if not SHOW_DATA: |
|
SHOW_DATA = True |
|
print('source: {}'.format(batch['input_ids'][0])) |
|
print('target: {}'.format(batch['labels'][0])) |
|
print('decoder source: {}'.format(batch['decoder_input_ids'][0])) |
|
|
|
print('source: {}'.format(self.detokenize(batch['input_ids'][0]))) |
|
print('decoder source: {}'.format(self.detokenize(batch['decoder_input_ids'][0]))) |
|
label_idx = batch['labels'][0] != -100 |
|
print('target: {}'.format(self.detokenize( |
|
batch['labels'][0][label_idx]))) |
|
output = self.model(**batch) |
|
acc = self.comput_metrix(output.logits, batch['labels']) |
|
self.log('train_loss', output.loss, sync_dist=True) |
|
self.log('train_acc', acc, sync_dist=True) |
|
return output.loss |
|
|
|
def comput_metrix(self, logits, labels): |
|
label_idx = labels != -100 |
|
labels = labels[label_idx] |
|
logits = logits[label_idx].view(-1, logits.size(-1)) |
|
y_pred = torch.argmax(logits, dim=-1) |
|
y_pred = y_pred.view(size=(-1,)) |
|
y_true = labels.view(size=(-1,)).float() |
|
corr = torch.eq(y_pred, y_true) |
|
acc = torch.sum(corr.float())/labels.shape[0] |
|
return acc |
|
|
|
def validation_step(self, batch, batch_idx): |
|
output = self.model(**batch) |
|
acc = self.comput_metrix(output.logits, batch['labels']) |
|
self.log('val_loss', output.loss, sync_dist=True) |
|
self.log('val_acc', acc, sync_dist=True) |
|
|
|
def on_load_checkpoint(self, checkpoint) -> None: |
|
|
|
global_step_offset = checkpoint["global_step"] |
|
if 'global_samples' in checkpoint: |
|
self.consumed_samples = checkpoint['global_samples'] |
|
self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset |
|
|
|
|
|
if __name__ == '__main__': |
|
args_parser = argparse.ArgumentParser() |
|
args_parser = add_module_args(args_parser) |
|
args_parser = UniversalDataModule.add_data_specific_args(args_parser) |
|
args_parser = Trainer.add_argparse_args(args_parser) |
|
args_parser = RandengBart.add_module_specific_args(args_parser) |
|
args_parser = UniversalCheckpoint.add_argparse_args(args_parser) |
|
args = args_parser.parse_args() |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_path) |
|
|
|
collator = BartCollator( |
|
tokenizer=tokenizer, |
|
max_seq_length=args.max_seq_length, |
|
masked_lm_prob=args.masked_lm_prob, |
|
content_key=args.sample_content_key, |
|
permute_sentence_ratio=args.permute_sentence_ratio, |
|
) |
|
|
|
collator.setup() |
|
data_module = UniversalDataModule(tokenizer=tokenizer, args=args, collate_fn=collator) |
|
|
|
module = RandengBart(args, tokenizer=tokenizer) |
|
|
|
lr_monitor = LearningRateMonitor(logging_interval='step') |
|
checkpoint_callback = UniversalCheckpoint(args) |
|
|
|
|
|
if args.load_ckpt_path is not None and \ |
|
not os.path.exists(args.load_ckpt_path): |
|
print('--------warning no checkpoint found--------, remove args') |
|
args.load_ckpt_path = None |
|
|
|
trainer = Trainer.from_argparse_args(args, |
|
callbacks=[ |
|
lr_monitor, |
|
checkpoint_callback]) |
|
|
|
trainer.fit(module, data_module, ckpt_path=args.load_ckpt_path) |
|
|