|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""utils for ngram for ZEN2 model.""" |
|
|
|
import os |
|
import logging |
|
import math |
|
import numpy as np |
|
import torch |
|
from transformers import cached_path |
|
|
|
NGRAM_DICT_NAME = 'ngram.txt' |
|
|
|
logger = logging.getLogger(__name__) |
|
PRETRAINED_VOCAB_ARCHIVE_MAP = { |
|
'IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-345M-Chinese/resolve/main/ngram.txt', |
|
'IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese': 'https://huggingface.co/IDEA-CCNL/Erlangshen-ZEN2-668M-Chinese/resolve/main/ngram.txt', |
|
} |
|
|
|
|
|
class ZenNgramDict(object): |
|
""" |
|
Dict class to store the ngram |
|
""" |
|
|
|
def __init__(self, ngram_freq_path, tokenizer=None, max_ngram_in_seq=128): |
|
"""Constructs ZenNgramDict |
|
|
|
:param ngram_freq_path: ngrams with frequency |
|
""" |
|
if os.path.isdir(ngram_freq_path): |
|
ngram_freq_path = os.path.join(ngram_freq_path, NGRAM_DICT_NAME) |
|
self.ngram_freq_path = ngram_freq_path |
|
self.max_ngram_in_seq = max_ngram_in_seq |
|
self.max_ngram_len = 8 |
|
self.id_to_ngram_list = ["[pad]"] |
|
self.ngram_to_id_dict = {"[pad]": 0} |
|
self.ngram_to_freq_dict = {} |
|
|
|
logger.info("loading ngram frequency file {}".format(ngram_freq_path)) |
|
with open(ngram_freq_path, "r", encoding="utf-8") as fin: |
|
for i, line in enumerate(fin): |
|
items = line.strip().split(",") |
|
if len(items) != 2: |
|
continue |
|
ngram, freq = items |
|
|
|
if tokenizer: |
|
tokens = tuple(tokenizer.tokenize(ngram)) |
|
if len([token for token in tokens if "[UNK]" in token]) > 0: |
|
tokens = ngram |
|
else: |
|
tokens = tuple(ngram.split(" ")) |
|
self.id_to_ngram_list.append(tokens) |
|
self.ngram_to_id_dict[tokens] = i + 1 |
|
self.ngram_to_freq_dict[tokens] = int(freq) |
|
|
|
@classmethod |
|
def from_pretrained(cls, pretrained_model_name_or_path, cache_dir=None, **kwargs): |
|
""" |
|
Instantiate a PreTrainedBertModel from a pre-trained model file. |
|
Download and cache the pre-trained model file if needed. |
|
""" |
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: |
|
ngram_file = PRETRAINED_VOCAB_ARCHIVE_MAP[pretrained_model_name_or_path] |
|
if '-cased' in pretrained_model_name_or_path and kwargs.get('do_lower_case', True): |
|
logger.warning("The pre-trained model you are loading is a cased model but you have not set " |
|
"`do_lower_case` to False. We are setting `do_lower_case=False` for you but " |
|
"you may want to check this behavior.") |
|
kwargs['do_lower_case'] = False |
|
elif '-cased' not in pretrained_model_name_or_path and not kwargs.get('do_lower_case', True): |
|
logger.warning("The pre-trained model you are loading is an uncased model but you have set " |
|
"`do_lower_case` to False. We are setting `do_lower_case=True` for you " |
|
"but you may want to check this behavior.") |
|
kwargs['do_lower_case'] = True |
|
else: |
|
ngram_file = pretrained_model_name_or_path |
|
if os.path.isdir(ngram_file): |
|
ngram_file = os.path.join(ngram_file, NGRAM_DICT_NAME) |
|
|
|
try: |
|
resolved_ngram_file = cached_path(ngram_file, cache_dir=cache_dir) |
|
except EnvironmentError: |
|
if pretrained_model_name_or_path in PRETRAINED_VOCAB_ARCHIVE_MAP: |
|
logger.error( |
|
"Couldn't reach server at '{}' to download vocabulary.".format( |
|
ngram_file)) |
|
else: |
|
logger.error( |
|
"Model name '{}' was not found in model name list ({}). " |
|
"We assumed '{}' was a path or url but couldn't find any file " |
|
"associated to this path or url.".format( |
|
pretrained_model_name_or_path, |
|
', '.join(PRETRAINED_VOCAB_ARCHIVE_MAP.keys()), |
|
ngram_file)) |
|
return None |
|
if resolved_ngram_file == ngram_file: |
|
logger.info("loading vocabulary file {}".format(ngram_file)) |
|
else: |
|
logger.info("loading vocabulary file {} from cache at {}".format( |
|
ngram_file, resolved_ngram_file)) |
|
|
|
ngram_dict = cls(resolved_ngram_file, **kwargs) |
|
return ngram_dict |
|
|
|
def save(self, ngram_freq_path): |
|
ngram_freq_path = os.path.join(ngram_freq_path, NGRAM_DICT_NAME) |
|
with open(ngram_freq_path, "w+", encoding="utf-8") as fout: |
|
for ngram, freq in self.ngram_to_freq_dict.items(): |
|
fout.write("{},{}\n".format(" ".join(ngram), freq)) |
|
|
|
|
|
def extract_ngram_feature(tokens, ngram_dict, max_seq_len, seg_id_limit): |
|
|
|
ngram_matches = [] |
|
|
|
max_gram_n = ngram_dict.max_ngram_len |
|
for p in range(2, max_gram_n): |
|
for q in range(0, len(tokens) - p + 1): |
|
character_segment = tokens[q:q + p] |
|
|
|
|
|
character_segment = tuple(character_segment) |
|
if character_segment in ngram_dict.ngram_to_id_dict: |
|
ngram_index = ngram_dict.ngram_to_id_dict[character_segment] |
|
ngram_freq = ngram_dict.ngram_to_freq_dict[character_segment] |
|
ngram_matches.append([ngram_index, q, p, character_segment, ngram_freq]) |
|
|
|
|
|
ngram_matches = sorted(ngram_matches, key=lambda s: s[0]) |
|
|
|
max_word_in_seq_proportion = math.ceil((len(tokens) / max_seq_len) * ngram_dict.max_ngram_in_seq) |
|
if len(ngram_matches) > max_word_in_seq_proportion: |
|
ngram_matches = ngram_matches[:max_word_in_seq_proportion] |
|
ngram_ids = [ngram[0] for ngram in ngram_matches] |
|
ngram_positions = [ngram[1] for ngram in ngram_matches] |
|
ngram_lengths = [ngram[2] for ngram in ngram_matches] |
|
ngram_tuples = [ngram[3] for ngram in ngram_matches] |
|
ngram_freqs = [ngram[4] for ngram in ngram_matches] |
|
ngram_seg_ids = [0 if position < seg_id_limit else 1 for position in |
|
ngram_positions] |
|
|
|
ngram_mask_array = np.zeros(ngram_dict.max_ngram_in_seq, dtype=np.bool) |
|
ngram_mask_array[:len(ngram_ids)] = 1 |
|
|
|
|
|
padding = [0] * (ngram_dict.max_ngram_in_seq - len(ngram_ids)) |
|
ngram_ids += padding |
|
ngram_positions += padding |
|
ngram_lengths += padding |
|
ngram_seg_ids += padding |
|
ngram_freqs += padding |
|
|
|
|
|
|
|
return { |
|
"ngram_ids": ngram_ids, |
|
"ngram_positions": ngram_positions, |
|
"ngram_lengths": ngram_lengths, |
|
"ngram_tuples": ngram_tuples, |
|
"ngram_seg_ids": ngram_seg_ids, |
|
"ngram_masks": ngram_mask_array, |
|
"ngram_freqs": ngram_freqs, |
|
} |
|
|
|
|
|
def construct_ngram_matrix(ngram_data, max_seq_length): |
|
max_ngram_in_sequence = len(ngram_data["ngram_ids"]) |
|
ngram_ids_num = len([x for x in ngram_data["ngram_masks"] if x == 1]) |
|
|
|
ngram_positions_matrix = np.zeros(shape=(max_seq_length, max_ngram_in_sequence), dtype=np.float) |
|
for i in range(ngram_ids_num): |
|
ngram_positions_matrix[ngram_data["ngram_positions"][i]: |
|
ngram_data["ngram_positions"][i] + ngram_data["ngram_lengths"][i], i] = \ |
|
ngram_data["ngram_freqs"][i] |
|
ngram_positions_matrix_t = torch.from_numpy(ngram_positions_matrix.astype(np.float)) |
|
ngram_positions_matrix_t = torch.div(ngram_positions_matrix_t, |
|
torch.stack([torch.sum(ngram_positions_matrix_t, 1)] * ngram_positions_matrix_t.size(1)).t() + 1e-10) |
|
|
|
return ngram_positions_matrix_t.numpy() |
|
|