File size: 5,630 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
# coding=utf-8
# Copyright 2022 IDEA-CCNL The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch Della model. """

import torch
import torch.nn.functional as F
from torch.distributions import Bernoulli


def enforce_repetition_penalty(lprobs, prev_output_tokens, repetition_penalty=1.5):
    """repetition penalty (from CTRL paper https://arxiv.org/abs/1909.05858). """
    for i in range(len(prev_output_tokens)):
        for previous_token in set(prev_output_tokens[i]):
            # if score < 0 then repetition penalty has to multiplied to reduce the previous token probability
            if lprobs[i, previous_token] < 0:
                lprobs[i, previous_token] *= repetition_penalty
            else:
                lprobs[i, previous_token] /= repetition_penalty


def top_k_top_p_filtering(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
    """ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
        Args:
            logits: logits distribution shape (vocabulary size)
            top_k > 0: keep only top k tokens with highest probability (top-k filtering).
            top_p > 0.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
                Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
        From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
    """
    # assert logits.dim() == 1# batch size 1 for now - could be updated for more but the code would be less clear
    top_k = min(top_k, logits.size(-1))  # Safety check
    if top_k > 0:
        # Remove all tokens with a probability less than the last token of the top-k
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value

    if top_p > 0.0:
        sorted_logits, sorted_indices = torch.sort(logits, dim=-1, descending=True)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
        # Shift the indices to the right to keep also the first token above the threshold
        sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
        sorted_indices_to_remove[..., 0] = 0

        for i in range(sorted_indices.size()[0]):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
        # indices_to_remove = sorted_indices[sorted_indices_to_remove]
        # logits[indices_to_remove] = filter_value
    return logits


def word_drop(x, p, unk_token):
    x_ = x.detach().clone()
    mask = Bernoulli(1. - p).sample(x.shape)
    x_[mask == 0] = unk_token
    return x_


def log_sum_exp(value, dim=None, keepdim=False):
    """Numerically stable implementation of the operation
    value.exp().sum(dim, keepdim).log()
    """
    if dim is not None:
        m, _ = torch.max(value, dim=dim, keepdim=True)
        value0 = value - m
        if keepdim is False:
            m = m.squeeze(dim)
        return m + torch.log(torch.sum(torch.exp(value0), dim=dim, keepdim=keepdim))
    else:
        m = torch.max(value)
        sum_exp = torch.sum(torch.exp(value - m))
        return m + torch.log(sum_exp)


def connect(mean, logvar, nsamples=1, sample=True, clip=False, min_clip_val=-1., beta_logvar=1.):
    """
    Returns: Tensor1, Tensor2
        Tensor1: the tensor latent z with shape [batch, nsamples, nz]
    """
    # (batch, nsamples, nz)
    if sample:
        if clip:
            # NOTE: clip the logvar here to see if we can force z to be more distant
            logvar = torch.clip(logvar, min=min_clip_val)
        z = reparameterize(mean, logvar, nsamples, beta_logvar)
    else:
        batch_size, nz = mean.size()
        z = mean.unsqueeze(1).expand(batch_size, nsamples, nz)
    if nsamples == 1:
        z = z.squeeze(dim=1)
    return z


def reparameterize(mu, logvar, nsamples=1, beta_logvar=1.):
    """sample from posterior Gaussian family
    Args:
        mu: Tensor
            Mean of gaussian distribution with shape (batch, nz)
        logvar: Tensor
            logvar of gaussian distibution with shape (batch, nz)
    Returns: Tensor
        Sampled z with shape (batch, nsamples, nz)
    """
    batch_size, nz = mu.size()
    std = logvar.mul(0.5).exp().mul(beta_logvar)

    mu_expd = mu.unsqueeze(1).expand(batch_size, nsamples, nz)
    std_expd = std.unsqueeze(1).expand(batch_size, nsamples, nz)

    eps = torch.zeros_like(std_expd).normal_()

    return mu_expd + torch.mul(eps, std_expd)


def compute_kl_loss(mean1, logvar1, mean2, logvar2):
    '''adapted from adaVAE implementation https://github.com/ImKeTT/adavae/blob/main/src/adapters/vae.py#L1627'''
    exponential = logvar1 - logvar2 - torch.pow(mean1 - mean2, 2) / logvar2.exp() - torch.exp(logvar1 - logvar2) + 1
    result = -0.5 * torch.sum(exponential, tuple(range(1, len(exponential.shape))))
    return result