File size: 28,693 Bytes
8ebda9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
# coding=utf-8
# Copyright 2021 The IDEA Authors. All rights reserved.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from fengshen.models.zen2.modeling import ZenForTokenClassification
from fengshen.metric.metric import SeqEntityScore
from fengshen.models.zen2.tokenization import BertTokenizer
from fengshen.models.zen2.ngram_utils import ZenNgramDict
from pytorch_lightning.callbacks import LearningRateMonitor
from dataclasses import dataclass
import logging
import math
import numpy as np
import os
import json
import torch
import pytorch_lightning as pl
import argparse
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import Dataset, DataLoader
import torch.nn.functional as F
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.ERROR)
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id, ngram_ids, ngram_positions, ngram_lengths,
ngram_tuples, ngram_seg_ids, ngram_masks, valid_ids=None, label_mask=None, b_use_valid_filter=False):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.valid_ids = valid_ids
self.label_mask = label_mask
self.ngram_ids = ngram_ids
self.ngram_positions = ngram_positions
self.ngram_lengths = ngram_lengths
self.ngram_tuples = ngram_tuples
self.ngram_seg_ids = ngram_seg_ids
self.ngram_masks = ngram_masks
self.b_use_valid_filter = b_use_valid_filter
def convert_examples_to_features(examples, label_map, max_seq_length, tokenizer, ngram_dict):
"""Loads a data file into a list of `InputBatch`s."""
# label_map = {label: i for i, label in enumerate(label_list, 1)}
# label_map["[PAD]"] = 0
features = []
b_use_valid_filter = False
for (ex_index, example) in enumerate(examples):
textlist = example.text_a
labellist = example.label
tokens = []
labels = []
valid = []
label_mask = []
for i, word in enumerate(textlist):
token = tokenizer.tokenize(word)
if len(tokens) + len(token) > max_seq_length - 2:
break
tokens.extend(token)
label_1 = labellist[i]
for m in range(len(token)):
if m == 0:
labels.append(label_1)
valid.append(1)
label_mask.append(1)
else:
valid.append(0)
b_use_valid_filter = True
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]")
segment_ids.append(0)
valid.insert(0, 1)
label_mask.insert(0, 1)
label_ids.append(label_map["[CLS]"])
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
if len(labels) > i:
label_ids.append(label_map[labels[i]])
ntokens.append("[SEP]")
segment_ids.append(0)
valid.append(1)
label_mask.append(1)
label_ids.append(label_map["[SEP]"])
input_ids = tokenizer.convert_tokens_to_ids(ntokens)
input_mask = [1] * len(input_ids)
label_mask = [1] * len(label_ids)
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
label_ids.append(0)
valid.append(1)
label_mask.append(0)
while len(label_ids) < max_seq_length:
label_ids.append(0)
label_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
assert len(valid) == max_seq_length
assert len(label_mask) == max_seq_length
# ----------- code for ngram BEGIN-----------
ngram_matches = []
# Filter the ngram segment from 2 to 7 to check whether there is a ngram
max_gram_n = ngram_dict.max_ngram_len
for p in range(2, max_gram_n):
for q in range(0, len(tokens) - p + 1):
character_segment = tokens[q:q + p]
# j is the starting position of the ngram
# i is the length of the current ngram
character_segment = tuple(character_segment)
if character_segment in ngram_dict.ngram_to_id_dict:
ngram_index = ngram_dict.ngram_to_id_dict[character_segment]
ngram_freq = ngram_dict.ngram_to_freq_dict[character_segment]
ngram_matches.append([ngram_index, q, p, character_segment, ngram_freq])
ngram_matches = sorted(ngram_matches, key=lambda s: s[0])
max_ngram_in_seq_proportion = math.ceil((len(tokens) / max_seq_length) * ngram_dict.max_ngram_in_seq)
if len(ngram_matches) > max_ngram_in_seq_proportion:
ngram_matches = ngram_matches[:max_ngram_in_seq_proportion]
ngram_ids = [ngram[0] for ngram in ngram_matches]
ngram_positions = [ngram[1] for ngram in ngram_matches]
ngram_lengths = [ngram[2] for ngram in ngram_matches]
ngram_tuples = [ngram[3] for ngram in ngram_matches]
ngram_freqs = [ngram[4] for ngram in ngram_matches]
ngram_seg_ids = [0 if position < (len(tokens) + 2) else 1 for position in ngram_positions]
ngram_mask_array = np.zeros(ngram_dict.max_ngram_in_seq, dtype=np.bool)
ngram_mask_array[:len(ngram_ids)] = 1
# record the masked positions
ngram_positions_matrix = np.zeros(shape=(max_seq_length, ngram_dict.max_ngram_in_seq), dtype=np.int32)
for i in range(len(ngram_ids)):
ngram_positions_matrix[ngram_positions[i]:ngram_positions[i] + ngram_lengths[i], i] = ngram_freqs[i]
ngram_positions_matrix = torch.from_numpy(ngram_positions_matrix.astype(np.float))
ngram_positions_matrix = torch.div(ngram_positions_matrix, torch.stack(
[torch.sum(ngram_positions_matrix, 1)] * ngram_positions_matrix.size(1)).t() + 1e-10)
ngram_positions_matrix = ngram_positions_matrix.numpy()
# Zero-pad up to the max ngram in seq length.
padding = [0] * (ngram_dict.max_ngram_in_seq - len(ngram_ids))
ngram_ids += padding
ngram_lengths += padding
ngram_seg_ids += padding
# ----------- code for ngram END-----------
if ex_index < 5:
logger.info("*** Example ***")
logger.info("guid: %s" % (example.guid))
logger.info("tokens: %s" % " ".join([str(x) for x in tokens]))
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
logger.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logger.info("label: %s (id = %s)" % (",".join([str(x) for x in example.label]), ",".join([str(x) for x in label_ids])))
logger.info("valid: %s" % " ".join([str(x) for x in valid]))
logger.info("b_use_valid_filter: %s" % str(b_use_valid_filter))
logger.info("ngram_ids: %s" % " ".join([str(x) for x in ngram_ids]))
logger.info("ngram_positions: %s" % " ".join([str(x) for x in ngram_positions]))
logger.info("ngram_lengths: %s" % " ".join([str(x) for x in ngram_lengths]))
logger.info("ngram_tuples: %s" % " ".join([str(x) for x in ngram_tuples]))
logger.info("ngram_seg_ids: %s" % " ".join([str(x) for x in ngram_seg_ids]))
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_ids,
ngram_ids=ngram_ids,
ngram_positions=ngram_positions_matrix,
ngram_lengths=ngram_lengths,
ngram_tuples=ngram_tuples,
ngram_seg_ids=ngram_seg_ids,
ngram_masks=ngram_mask_array,
valid_ids=valid,
label_mask=label_mask,
b_use_valid_filter=b_use_valid_filter))
return features
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_examples(self, data_path, set_type, quotechar=' '):
"""See base class."""
return self._create_examples(
self._read_tsv(data_path, self.get_quotechar()), set_type)
def _create_examples(self, lines, set_type):
examples = []
for i, (sentence, label) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
text_a = sentence
label = label
examples.append(InputExample(guid=guid, text_a=text_a, label=label))
return examples
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
def get_quotechar(self):
return ' '
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
'''
read file
return format :
[ ['EU', 'B-ORG'], ['rejects', 'O'], ['German', 'B-MISC'], ['call', 'O'], ['to', 'O'], ['boycott', 'O'], ['British', 'B-MISC'], ['lamb', 'O'], ['.', 'O'] ]
'''
f = open(input_file)
data = []
sentence = []
label = []
for line in f:
if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == "\n":
if len(sentence) > 0:
data.append((sentence, label))
sentence = []
label = []
continue
splits = line.split(quotechar)
sentence.append(splits[0])
label.append(splits[-1][:-1])
if len(sentence) > 0:
data.append((sentence, label))
sentence = []
label = []
return data
class MSRAProcessor(DataProcessor):
"""Processor for the msra data set."""
def get_labels(self):
return ['B-NR', 'B-NS', 'B-NT', 'E-NR', 'E-NS', 'E-NT', 'M-NR',
'M-NS', 'M-NT', 'O', 'S-NR', 'S-NS', 'S-NT', '[CLS]', '[SEP]']
class OntoNotes4Processor(DataProcessor):
"""Processor for the OntoNotes4 data set."""
def get_labels(self):
return ['B-GPE', 'B-LOC', 'B-ORG', 'B-PER', 'E-GPE', 'E-LOC',
'E-ORG', 'E-PER', 'M-GPE', 'M-LOC', 'M-ORG', 'M-PER', 'O',
'S-GPE', 'S-LOC', 'S-ORG', 'S-PER', '[CLS]', '[SEP]']
class WeiboProcessor(DataProcessor):
"""Processor for the Weibo data set."""
def get_labels(self):
return ['B-GPE.NAM', 'B-GPE.NOM', 'B-LOC.NAM', 'B-LOC.NOM',
'B-ORG.NAM', 'B-ORG.NOM', 'B-PER.NAM', 'B-PER.NOM', 'E-GPE.NAM',
'E-GPE.NOM', 'E-LOC.NAM', 'E-LOC.NOM', 'E-ORG.NAM', 'E-ORG.NOM',
'E-PER.NAM', 'E-PER.NOM', 'M-GPE.NAM', 'M-LOC.NAM', 'M-LOC.NOM',
'M-ORG.NAM', 'M-ORG.NOM', 'M-PER.NAM', 'M-PER.NOM', 'O',
'S-GPE.NAM', 'S-LOC.NOM', 'S-PER.NAM', 'S-PER.NOM', '[CLS]', '[SEP]']
class ResumeProcessor(DataProcessor):
"""Processor for the resume data set."""
def get_labels(self):
return ['B-CONT', 'B-EDU', 'B-LOC', 'B-NAME', 'B-ORG', 'B-PRO',
'B-RACE', 'B-TITLE', 'E-CONT', 'E-EDU', 'E-LOC', 'E-NAME',
'E-ORG', 'E-PRO', 'E-RACE', 'E-TITLE', 'M-CONT', 'M-EDU',
'M-LOC', 'M-NAME', 'M-ORG', 'M-PRO', 'M-RACE', 'M-TITLE',
'O', 'S-NAME', 'S-ORG', 'S-RACE', '[CLS]', '[SEP]']
class CMeEEProcessor(DataProcessor):
"""Processor for the CMeEE data set."""
def get_quotechar(self):
return '\t'
def get_labels(self):
return ['B-临床表现', 'B-医学检验项目', 'B-医疗程序', 'B-医疗设备',
'B-微生物类', 'B-疾病', 'B-科室', 'B-药物', 'B-身体', 'I-临床表现',
'I-医学检验项目', 'I-医疗程序', 'I-医疗设备', 'I-微生物类',
'I-疾病', 'I-科室', 'I-药物', 'I-身体', 'O', '[CLS]', '[SEP]']
class CLUENERProcessor(DataProcessor):
"""Processor for the CLUENER data set."""
def get_quotechar(self):
return '\t'
def get_labels(self):
return ['B-书名', 'B-公司', 'B-地址', 'B-姓名', 'B-政府', 'B-景点',
'B-游戏', 'B-电影', 'B-组织机构', 'B-职位', 'I-书名', 'I-公司',
'I-地址', 'I-姓名', 'I-政府', 'I-景点', 'I-游戏', 'I-电影',
'I-组织机构', 'I-职位', 'O', '[CLS]', '[SEP]']
class TaskDataset(Dataset):
def __init__(self, data_path, processor, mode='train'):
super().__init__()
self.data = self.load_data(data_path, processor, mode)
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.data[index]
def load_data(self, data_path, processor, mode):
if mode == "train":
examples = processor.get_examples(data_path, mode)
elif mode == "test":
examples = processor.get_examples(data_path, mode)
elif mode == "dev":
examples = processor.get_examples(data_path, mode)
return examples
@dataclass
class TaskCollator:
args = None
tokenizer = None
ngram_dict = None
label2id = None
def __call__(self, samples):
features = convert_examples_to_features(samples, self.label2id, self.args.max_seq_length, self.tokenizer, self.ngram_dict)
# logger.info(" Num examples = %d", len(samples))
input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)
segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)
label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long)
valid_ids = torch.tensor([f.valid_ids for f in features], dtype=torch.long)
ngram_ids = torch.tensor([f.ngram_ids for f in features], dtype=torch.long)
ngram_positions = torch.tensor([f.ngram_positions for f in features], dtype=torch.long)
# ngram_lengths = torch.tensor([f.ngram_lengths for f in features], dtype=torch.long)
# ngram_seg_ids = torch.tensor([f.ngram_seg_ids for f in features], dtype=torch.long)
# ngram_masks = torch.tensor([f.ngram_masks for f in features], dtype=torch.long)
# label_mask = torch.tensor([f.label_mask for f in features], dtype=torch.long)
b_use_valid_filter = torch.tensor([f.b_use_valid_filter for f in features], dtype=torch.bool)
# 取第一个出来?
# b_use_valid_filter = b_use_valid_filter.detach().cpu().numpy()[0]
b_use_valid_filter = b_use_valid_filter[0]
return {
'input_ids': input_ids,
'input_ngram_ids': ngram_ids,
'ngram_position_matrix': ngram_positions,
'attention_mask': input_mask,
'token_type_ids': segment_ids,
'labels': label_ids,
'valid_ids': valid_ids,
'b_use_valid_filter': b_use_valid_filter,
}
class TaskDataModel(pl.LightningDataModule):
@staticmethod
def add_data_specific_args(parent_args):
parser = parent_args.add_argument_group('TASK NAME DataModel')
parser.add_argument('--data_dir', default='./data', type=str)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--train_data', default='train.json', type=str)
parser.add_argument('--valid_data', default='dev.json', type=str)
parser.add_argument('--test_data', default='test.json', type=str)
parser.add_argument('--train_batchsize', default=16, type=int)
parser.add_argument('--valid_batchsize', default=32, type=int)
parser.add_argument('--max_seq_length', default=128, type=int)
parser.add_argument('--texta_name', default='text', type=str)
parser.add_argument('--textb_name', default='sentence2', type=str)
parser.add_argument('--label_name', default='label', type=str)
parser.add_argument('--id_name', default='id', type=str)
parser.add_argument('--dataset_name', default=None, type=str)
parser.add_argument('--vocab_file',
type=str, default=None,
help="Vocabulary mapping/file BERT was pretrainined on")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument('--task_name', default='weibo', type=str)
return parent_args
def __init__(self, args):
super().__init__()
self.train_batchsize = args.train_batchsize
self.valid_batchsize = args.valid_batchsize
self.collator = TaskCollator()
self.collator.args = args
self.collator.tokenizer = BertTokenizer.from_pretrained(args.pretrained_model_path, do_lower_case=args.do_lower_case)
self.collator.ngram_dict = ZenNgramDict.from_pretrained(args.pretrained_model_path, tokenizer=self.collator.tokenizer)
processors = {
'weibo': WeiboProcessor,
'resume': ResumeProcessor,
'msra': MSRAProcessor,
'ontonotes4': OntoNotes4Processor,
'cmeee': CMeEEProcessor,
'cluener': CLUENERProcessor,
}
if args.task_name not in processors:
raise ValueError("Task not found: %s" % (args.task_name))
processor = processors[args.task_name]()
# 生成id映射
label_list = processor.get_labels()
label2id = {label: i for i, label in enumerate(label_list, 1)}
label2id["[PAD]"] = 0
self.id2label = {v: k for k, v in label2id.items()}
self.collator.label2id = label2id
if args.dataset_name is None:
self.train_data = TaskDataset(os.path.join(
args.data_dir, args.train_data), processor, mode='train')
self.valid_data = TaskDataset(os.path.join(
args.data_dir, args.valid_data), processor, mode='dev')
self.test_data = TaskDataset(os.path.join(
args.data_dir, args.test_data), processor, mode='test')
else:
import datasets
ds = datasets.load_dataset(args.dataset_name)
self.train_data = ds['train']
self.valid_data = ds['validation']
self.test_data = ds['test']
self.save_hyperparameters(args)
def train_dataloader(self):
return DataLoader(self.train_data, shuffle=True, batch_size=self.train_batchsize, pin_memory=False,
collate_fn=self.collator)
def val_dataloader(self):
return DataLoader(self.valid_data, shuffle=False, batch_size=self.valid_batchsize, pin_memory=False,
collate_fn=self.collator)
def predict_dataloader(self):
return DataLoader(self.test_data, shuffle=False, batch_size=self.valid_batchsize, pin_memory=False,
collate_fn=self.collator)
class LitModel(pl.LightningModule):
@staticmethod
def add_model_specific_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--markup', default='bios', type=str)
parser.add_argument('--middle_prefix', default='I-', type=str)
return parent_args
def __init__(self, args, id2label):
super().__init__()
# config = ZenConfig(os.path.join(args.pretrained_model_path, 'config.json'))
self.model = ZenForTokenClassification.from_pretrained(args.pretrained_model_path, num_labels=len(id2label))
self.seq_entity_score = SeqEntityScore(id2label, markup=args.markup, middle_prefix=args.middle_prefix)
self.train_seq_entity_score = SeqEntityScore(id2label, markup=args.markup, middle_prefix=args.middle_prefix)
self.id2label = id2label
self.label2id = {v: k for k, v in id2label.items()}
self.save_hyperparameters(args)
def setup(self, stage) -> None:
if stage == 'fit':
train_loader = self.trainer._data_connector._train_dataloader_source.dataloader()
# Calculate total steps
if self.trainer.max_epochs > 0:
world_size = self.trainer.world_size
tb_size = self.hparams.train_batchsize * max(1, world_size)
ab_size = self.trainer.accumulate_grad_batches
self.total_steps = (len(train_loader.dataset) *
self.trainer.max_epochs // tb_size) // ab_size
else:
self.total_steps = self.trainer.max_steps // self.trainer.accumulate_grad_batches
print('Total steps: {}' .format(self.total_steps))
def training_step(self, batch, batch_idx):
outputs = self.model(**batch)
loss = outputs.loss
# logits = outputs.logits
# preds = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
# preds = preds.detach().cpu().numpy()
# labels = batch['labels'].detach().cpu().numpy()
# num_labels = len(self.label2id)
# y_true = []
# y_pred = []
# for i, label in enumerate(labels):
# temp_1 = []
# temp_2 = []
# for j, m in enumerate(label):
# if j == 0:
# continue
# elif labels[i][j] == num_labels - 1:
# y_true.append(temp_1)
# y_pred.append(temp_2)
# break
# else:
# temp_1.append(self.id2label[labels[i][j]])
# temp_2.append(self.id2label[preds[i][j]])
# self.train_seq_entity_score.update(y_true, y_pred)
# result = self.train_seq_entity_score.result()
# self.train_seq_entity_score.reset()
self.log('train_loss', loss)
return loss
def validation_step(self, batch, batch_idx):
outputs = self.model(**batch)
loss = outputs.loss
logits = outputs.logits
preds = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
preds = preds.detach().cpu().numpy()
labels = batch['labels'].detach().cpu().numpy()
num_labels = len(self.label2id)
y_true = []
y_pred = []
for i, label in enumerate(labels):
temp_1 = []
temp_2 = []
for j, m in enumerate(label):
if j == 0:
continue
elif labels[i][j] == num_labels - 1:
y_true.append(temp_1)
y_pred.append(temp_2)
break
else:
temp_1.append(self.id2label[labels[i][j]])
temp_2.append(self.id2label[preds[i][j]])
self.seq_entity_score.update(y_true, y_pred)
self.log('val_loss', loss)
def validation_epoch_end(self, outputs):
# compute metric for all process
score_dict, _ = self.seq_entity_score.result()
if self.trainer._accelerator_connector.cluster_environment.global_rank() == 0:
print('score_dict:\n', score_dict)
# reset the metric after once validation
self.seq_entity_score.reset()
for k, v in score_dict.items():
self.log('val_{}'.format(k), v)
def configure_optimizers(self):
from fengshen.models.model_utils import configure_optimizers
return configure_optimizers(self)
class TaskModelCheckpoint:
@staticmethod
def add_argparse_args(parent_args):
parser = parent_args.add_argument_group('BaseModel')
parser.add_argument('--monitor', default='train_loss', type=str)
parser.add_argument('--mode', default='min', type=str)
parser.add_argument('--dirpath', default='./log/', type=str)
parser.add_argument(
'--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str)
parser.add_argument('--save_top_k', default=3, type=float)
parser.add_argument('--every_n_train_steps', default=100, type=float)
parser.add_argument('--save_weights_only', default=True, type=bool)
return parent_args
def __init__(self, args):
self.callbacks = ModelCheckpoint(monitor=args.monitor,
save_top_k=args.save_top_k,
mode=args.mode,
every_n_train_steps=args.every_n_train_steps,
save_weights_only=args.save_weights_only,
dirpath=args.dirpath,
filename=args.filename)
def save_test(data, args, data_model):
with open(args.output_save_path, 'w', encoding='utf-8') as f:
idx = 0
for i in range(len(data)):
batch = data[i]
for sample in batch:
tmp_result = dict()
label_id = np.argmax(sample.numpy())
tmp_result['id'] = data_model.test_data.data[idx]['id']
tmp_result['label'] = data_model.id2label[label_id]
json_data = json.dumps(tmp_result, ensure_ascii=False)
f.write(json_data+'\n')
idx += 1
print('save the result to '+args.output_save_path)
def main():
total_parser = argparse.ArgumentParser("TASK NAME")
total_parser.add_argument('--pretrained_model_path', default='', type=str)
total_parser.add_argument('--output_save_path',
default='./predict.json', type=str)
# * Args for data preprocessing
total_parser = TaskDataModel.add_data_specific_args(total_parser)
# * Args for training
total_parser = pl.Trainer.add_argparse_args(total_parser)
total_parser = TaskModelCheckpoint.add_argparse_args(total_parser)
# * Args for base model
from fengshen.models.model_utils import add_module_args
total_parser = add_module_args(total_parser)
total_parser = LitModel.add_model_specific_args(total_parser)
args = total_parser.parse_args()
checkpoint_callback = TaskModelCheckpoint(args).callbacks
lr_monitor = LearningRateMonitor(logging_interval='step')
trainer = pl.Trainer.from_argparse_args(args,
callbacks=[checkpoint_callback, lr_monitor]
)
data_model = TaskDataModel(args)
id2label = data_model.id2label
print('id2label:', id2label)
model = LitModel(args, id2label)
trainer.fit(model, data_model)
if __name__ == "__main__":
main()
|