File size: 3,219 Bytes
8ebda9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 |
#!/bin/bash
#SBATCH --job-name=finetune_wenzhong
#SBATCH --cpus-per-task=50
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --gres=gpu:1 # number of gpus
#SBATCH -o %x-%j.log
#SBATCH -e %x-%j.err
set -x -e
export MASTER_PORT=$[RANDOM%10000+50000]
export TORCH_EXTENSIONS_DIR=/cognitive_comp/gaoxinyu/torch_extendsions
echo "START TIME: $(date)"
MICRO_BATCH_SIZE=1
ROOT_DIR=/cognitive_comp/gaoxinyu/FS/fengshen/fengshen
ZERO_STAGE=3
config_json="$ROOT_DIR/ds_config.$SLURM_JOBID.json"
#config_json="$ROOT_DIR/ds_config.wzw.json"
# Deepspeed figures out GAS dynamically from dynamic GBS via set_train_batch_size()
cat <<EOT > $config_json
{
"train_micro_batch_size_per_gpu":1,
"steps_per_print":100,
"gradient_clipping":1,
"zero_optimization":{
"stage": $ZERO_STAGE,
"offload_optimizer":{
"device":"cpu",
"pin_memory":true
},
"offload_param":{
"device":"cpu",
"pin_memory":true
},
"overlap_comm":true,
"contiguous_gradients":true,
"sub_group_size":1000000000,
"stage3_max_live_parameters":1000000000,
"stage3_max_reuse_distance":1000000000,
"stage3_gather_fp16_weights_on_model_save":true
},
"optimizer":{
"type":"Adam",
"params":{
"lr": 1e-5,
"weight_decay":0.01
}
},
"scheduler":{
"type":"WarmupLR",
"params":{
"warmup_min_lr":5e-6,
"warmup_max_lr":1e-5
}
},
"zero_allow_untested_optimizer":false,
"fp16":{
"enabled":true,
"loss_scale":0,
"loss_scale_window":1000,
"hysteresis":2,
"min_loss_scale":1
},
"activation_checkpointing":{
"partition_activations":false,
"contiguous_memory_optimization":false
},
"wall_clock_breakdown":false
}
EOT
export PL_DEEPSPEED_CONFIG_PATH=$config_json
TRAINER_ARGS="
--max_epochs 2 \
--gpus 1 \
--num_nodes 1 \
--strategy deepspeed_stage_3 \
--precision 16 \
--default_root_dir $ROOT_DIR \
--dirpath $ROOT_DIR/ckpt \
--save_top_k 3 \
--monitor train_loss \
--mode min \
--save_last \
"
DATA_DIR=/cognitive_comp/gaoxinyu/data/yuyuan
DATA_ARGS="
--data_dir $DATA_DIR \
--train_batchsize $MICRO_BATCH_SIZE \
--valid_batchsize $MICRO_BATCH_SIZE \
--train_data train.txt \
--valid_data valid.txt \
--test_data test.txt
"
MODEL_ARGS="
--pretrained_model_path /cognitive_comp/gaoxinyu/hf_model/wenzhong \
--output_save_path $ROOT_DIR/predict.json \
--learning_rate 1e-4 \
--weight_decay 0.1 \
--warmup 0.01 \
"
SCRIPTS_PATH=/cognitive_comp/gaoxinyu/FS/fengshen/finetune_wenzhong.py
export CMD=" \
$SCRIPTS_PATH \
$TRAINER_ARGS \
$MODEL_ARGS \
$DATA_ARGS \
"
echo $CMD
SINGULARITY_PATH=/cognitive_comp/gaoxinyu/docker/pytorch21_06_py3_docker_image_v2.sif
# to debug - add echo (it exits and prints what it would have launched)
#run_cmd="$PY_LAUNCHER $CMD"
clear; srun --jobid $SLURM_JOBID singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c 'python $CMD'
# bash -c 'python $CMD' |