File size: 8,199 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import time
from builtins import print
import sys
import os
import torch
import argparse
import json
import pytorch_lightning as pl
from transformers import MT5Config, MT5Tokenizer
from pytorch_lightning import Trainer, loggers
from transformers import MT5ForConditionalGeneration
from pytorch_lightning.callbacks import LearningRateMonitor
# os.environ["CUDA_VISIBLE_DEVICES"] = '3'


class MT5PretrainModel(pl.LightningModule):

    @staticmethod
    def add_model_specific_args(parent_args):
        parser = parent_args.add_argument_group('BaseModel')
        parser.add_argument('--keep_tokens_path', default=None, type=str)
        return parent_args

    def __init__(self, args):
        super().__init__()
        self.save_hyperparameters(args)
        if args.tokenizer_type == 't5_tokenizer':
            if args.new_vocab_path is not None:
                # 用于从mt5继续训练,此时只保留中英文词表,spm采用新模型
                assert args.keep_tokens_path is not None
                keep_tokens = json.load(open(args.keep_tokens_path))
                self.model = MT5ForConditionalGeneration.from_pretrained(
                    args.pretrained_model_path)
                new_config = self.model.config
                new_config.vocab_size = len(keep_tokens)
                print('vocab_size:', new_config.vocab_size)

                new_state_dict = self.model.state_dict()
                select_index = torch.tensor(keep_tokens)
                new_state_dict['encoder.embed_tokens.weight'] = torch.index_select(
                    new_state_dict['encoder.embed_tokens.weight'], dim=0, index=select_index)
                new_state_dict['shared.weight'] = torch.index_select(
                    new_state_dict['shared.weight'], dim=0, index=select_index)
                new_state_dict['decoder.embed_tokens.weight'] = torch.index_select(
                    new_state_dict['decoder.embed_tokens.weight'], dim=0, index=select_index)
                new_state_dict['lm_head.weight'] = torch.index_select(
                    new_state_dict['lm_head.weight'], dim=0, index=select_index)
                self.model = MT5ForConditionalGeneration.from_pretrained(
                    args.pretrained_model_path, config=new_config, state_dict=new_state_dict)
                # self.model = MT5ForConditionalGeneration(config=new_config)
            else:
                # 用于继续训练
                self.model = MT5ForConditionalGeneration.from_pretrained(
                    args.pretrained_model_path
                )
        else:
            self.model = MT5ForConditionalGeneration(
                MT5Config.from_pretrained(args.pretrained_model_path)
            )

    def setup(self, stage) -> None:
        if stage == 'fit':
            train_loader = self.trainer._data_connector._train_dataloader_source.dataloader()

            # Calculate total steps
            if self.trainer.max_epochs > 0:
                world_size = self.trainer.world_size
                tb_size = self.hparams.train_batchsize * max(1, world_size)
                ab_size = self.trainer.accumulate_grad_batches * float(self.trainer.max_epochs)
                self.total_steps = (len(train_loader.dataset) *
                                    self.trainer.max_epochs // tb_size) // ab_size
            else:
                self.total_steps = self.trainer.max_steps // self.trainer.accumulate_grad_batches

            print('Total steps: {}' .format(self.total_steps))

    def configure_optimizers(self):
        from fengshen.models.model_utils import configure_optimizers
        return configure_optimizers(self)

    def training_step(self, batch, batch_idx):
        output = self.model(
            input_ids=batch['input_ids'], labels=batch['labels'])
        acc = self.comput_metrix(output.logits, batch['labels'])
        self.log('train_loss', output.loss, sync_dist=True)
        self.log('train_acc', acc, sync_dist=True)
        return output.loss

    def validation_step(self, batch, batch_idx):
        # print('is out of index: ', batch['input_ids'][batch['input_ids'] >= 32598])
        output = self.model(
            input_ids=batch['input_ids'], labels=batch['labels'])
        acc = self.comput_metrix(output.logits, batch['labels'])
        self.log('val_loss', output.loss, sync_dist=True)
        self.log('val_acc', acc, sync_dist=True)

    def comput_metrix(self, logits, labels):
        y_pred = torch.argmax(logits, dim=-1)
        y_pred = y_pred.view(size=(-1,))
        y_true = labels.view(size=(-1,)).float()
        corr = torch.eq(y_pred, y_true)
        acc = torch.sum(corr.float())/y_true.shape[0]
        return acc

    def on_save_checkpoint(self, checkpoint) -> None:
        # Save the current loop info in the mid of epoch
        # if you lightning <= 1.6.0  uncomment the line below
        # checkpoint['loops'] = self.trainer.checkpoint_connector._get_loops_state_dict()
        if self.trainer.global_rank == 0 and self.trainer.global_step % self.hparams.every_n_train_steps == 0:
            self.model.save_pretrained(os.path.join(
                self.trainer.checkpoint_callback.dirpath,
                'hf_pretrained_epoch{}_step{}'.format(self.trainer.current_epoch, self.trainer.global_step)))

    def on_load_checkpoint(self, checkpoint) -> None:
        global_step_offset = checkpoint["global_step"]
        if 'global_samples' in checkpoint:
            self.consumed_samples = checkpoint['global_samples']
        self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset


def get_time_str():
    return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())


def main():
    total_parser = argparse.ArgumentParser("Pretrain Unsupervise.")
    total_parser.add_argument(
        '--do_eval_only', action='store_true', default=False)
    total_parser.add_argument(
        '--pretrained_model_path', default=None, type=str)
    total_parser.add_argument(
        '--new_vocab_path', default=None, type=str)
    total_parser.add_argument('--max_seq_length', default=1024, type=int)
    total_parser.add_argument('--ckpt_path', default=None, type=str)
    sys.path.append('../../../')
    from fengshen.data.t5_dataloader.t5_datasets import UnsuperviseT5DataModel
    from fengshen.utils.universal_checkpoint import UniversalCheckpoint
    # * Args for data preprocessing
    total_parser = UnsuperviseT5DataModel.add_data_specific_args(total_parser)
    # * Args for training
    total_parser = Trainer.add_argparse_args(total_parser)
    total_parser = UniversalCheckpoint.add_argparse_args(total_parser)
    total_parser = MT5PretrainModel.add_model_specific_args(total_parser)
    # * Args for base model
    args = total_parser.parse_args()
    print('Argument parse success.')
    print('UnsuperviseT5DataModel load start {}'.format(get_time_str()))
    data_model = UnsuperviseT5DataModel(args)
    print('UnsuperviseT5DataModel load end {}'.format(get_time_str()))
    if not args.do_eval_only:
        model = MT5PretrainModel(args)
        checkpoint_callback = UniversalCheckpoint(args)
        lr_monitor = LearningRateMonitor(logging_interval='step')
        logger = loggers.TensorBoardLogger(save_dir=os.path.join(
            args.default_root_dir, 'logs/'))
        trainer = Trainer.from_argparse_args(args,
                                             logger=logger,
                                             callbacks=[checkpoint_callback, lr_monitor]
                                             )
        trainer.fit(model, data_model, ckpt_path=args.ckpt_path)
    else:
        tokenizer = MT5Tokenizer.from_pretrained(args.new_vocab_path, extra_ids=0)
        model = MT5PretrainModel(args=args, num_data=len(data_model.predict_dataloader()))
        trainer = Trainer.from_argparse_args(args)

        result = trainer.predict(model, data_model)
        result = result[0]
        for i in range(4):
            print(tokenizer.batch_decode(result['input_ids'][i]))
            print(tokenizer.batch_decode(result['predict_ids'][i]))
            print(tokenizer.batch_decode(result['labels'][i]))


if __name__ == '__main__':
    main()