File size: 4,059 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/bin/bash
#SBATCH --job-name=randeng_t5_large
#SBATCH --nodes=2
#SBATCH --ntasks-per-node=8
#SBATCH --gres=gpu:8               # number of gpus
#SBATCH --cpus-per-task=30 # cpu-cores per task (>1 if multi-threaded tasks)
#SBATCH -o %x-%j.log
#SBATCH -e %x-%j.err

set -x -e

echo "START TIME: $(date)"
MICRO_BATCH_SIZE=8
ROOT_DIR=/cognitive_comp/ganruyi/experiments/randeng_t5_large_v2/
if [ ! -d ${ROOT_DIR} ];then
  mkdir ${ROOT_DIR}
  echo ${ROOT_DIR} created!!!!!!!!!!!!!!
else
  echo ${ROOT_DIR} exist!!!!!!!!!!!!!!!
fi

ZERO_STAGE=1

config_json="$ROOT_DIR/ds_config.randeng_t5_large_pretrain.$SLURM_JOBID.json"
export MASTER_PORT=$[RANDOM%10000+30000]

cat <<EOT > $config_json
{
  "train_micro_batch_size_per_gpu": ${MICRO_BATCH_SIZE},
  "steps_per_print": 100,
  "gradient_clipping": 1.0,
  "zero_optimization": {
    "stage": $ZERO_STAGE,
    "contiguous_gradients": false,
    "overlap_comm": true,
    "reduce_scatter": true,
    "reduce_bucket_size": 50000000,
    "allgather_bucket_size": 500000000
  },
  "optimizer": {
    "type": "Adam",
    "params": {
      "lr": 1e-4,
      "weight_decay": 1e-2
    }
  },
  "scheduler": {
    "params": {
      "warmup_max_lr": 1e-04,
      "warmup_min_lr": 1e-05,
      "total_num_steps": 100000,
      "warmup_num_steps" : 10000
    },
    "type": "WarmupDecayLR"  
  },
  "zero_allow_untested_optimizer": false,
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "loss_scale_window": 1000,
    "hysteresis": 2,
    "min_loss_scale": 1
  },
  "activation_checkpointing": {
    "partition_activations": false,
    "contiguous_memory_optimization": false
  },
  "wall_clock_breakdown": false
}
EOT

export PL_DEEPSPEED_CONFIG_PATH=$config_json
export TORCH_EXTENSIONS_DIR=/cognitive_comp/ganruyi/tmp/torch_extendsions
# strategy=ddp
strategy=deepspeed_stage_1

TRAINER_ARGS="
    --max_epochs 1 \
    --gpus 8 \
    --num_nodes 2 \
    --strategy ${strategy} \
    --default_root_dir $ROOT_DIR \
    --dirpath $ROOT_DIR/ckpt \
    --save_top_k 3 \
    --every_n_train_steps 1000000 \
    --monitor train_loss \
    --mode min \
    --save_last \
    --val_check_interval 0.01 \
    --preprocessing_num_workers 20 \
"
# --accumulate_grad_batches 8 \
DATA_DIR=wudao_180g_t5_tokenized_512

DATA_ARGS="
    --train_batchsize $MICRO_BATCH_SIZE \
    --valid_batchsize $MICRO_BATCH_SIZE \
    --train_data ${DATA_DIR} \
    --train_split_size 0.999 \
    --max_seq_length 512 \
"

MODEL_ARGS="
    --pretrained_model_path /cognitive_comp/ganruyi/hf_models/google/mt5-large \
    --new_vocab_path /cognitive_comp/ganruyi/hf_models/t5_cn_small/sentencepiece_cn.model \
    --keep_tokens_path /cognitive_comp/ganruyi/hf_models/t5_cn_small/sentencepiece_cn_keep_tokens.json \
"
# --ckpt_path /cognitive_comp/ganruyi/experiments/randeng_t5_large/ckpt/last.ckpt \

SCRIPTS_PATH=/cognitive_comp/ganruyi/Fengshenbang-LM/fengshen/examples/pretrain_t5/pretrain_t5.py

export CMD=" \
    $SCRIPTS_PATH \
    $TRAINER_ARGS \
    $MODEL_ARGS \
    $DATA_ARGS \
    "

echo $CMD
# source activate base
# python $CMD
# srun --nodes=1 --gres=gpu:8 --ntasks-per-node=8 --cpus-per-task=30 --jobid=171866 -e %x-%j.err -o %x-%j.log python $CMD

SINGULARITY_PATH=/cognitive_comp/ganruyi/pytorch21_06_py3_docker_image_v2.sif
srun --jobid=172781 --job-name=randeng_t5_large --nodes=2 --gres=gpu:8 --ntasks-per-node=8 --cpus-per-task=30 -e randeng_t5_large-%j.err -o randeng_t5_large-%j.log singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'


# to debug - add echo (it exits and prints what it would have launched)
#run_cmd="$PY_LAUNCHER $CMD"
# salloc --nodes=1 --gres=gpu:2 --cpus-per-gpu=20 -t 24:00:00
# clear; srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python $CMD'
# clear; srun singularity exec --nv -B /cognitive_comp/:/cognitive_comp/ $SINGULARITY_PATH bash -c '/home/ganruyi/anaconda3/bin/python -u -m debugpy --listen 192.168.190.2:53005 --wait-for-client $CMD'