File size: 12,116 Bytes
8ebda9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
from transformers import AutoTokenizer, BartForConditionalGeneration, BartConfig
from pytorch_lightning import (
LightningModule,
Trainer,
)
from pytorch_lightning.callbacks import LearningRateMonitor
from dataclasses import dataclass
import os
import argparse
import torch
import math
import time
from torch.utils.data._utils.collate import default_collate
from fengshen.data.data_utils.mask_utils import create_masked_lm_predictions
from fengshen.data.universal_datamodule import UniversalDataModule
from fengshen.utils import UniversalCheckpoint
from fengshen.models.model_utils import (
get_total_steps,
configure_optimizers,
add_module_args,
)
import numpy as np
SHOW_DATA = False
@ dataclass
class BartCollator:
'''
由input处理成samples,也就是最终模型的输入
其中主要处理逻辑在__call__里
包含text infilling和sentence shuffle任务
'''
tokenizer: None # 分词
max_seq_length: 512
masked_lm_prob: 0.15
permute_sentence_ratio: 1.0
content_key: str = 'text'
def setup(self):
from fengshen.data.data_utils.sentence_split import ChineseSentenceSplitter
self.sentence_split = ChineseSentenceSplitter()
self.np_rng = np.random.RandomState(seed=((int(time.time()) % 2**32)))
inv_vocab = {v: k for k, v in self.tokenizer.vocab.items()}
self.vocab_id_list = list(inv_vocab.keys())
self.vocab_id_to_token_dict = inv_vocab
import jieba_fast
self.zh_tokenizer = jieba_fast.lcut
seg_tokens = ['。', ';', ';', '!', '!', '?', '?']
seg_token_ids = []
for t in seg_tokens:
if t in self.tokenizer.vocab:
seg_token_ids.append(self.tokenizer.vocab[t])
else:
print('seg_token "{}" not in vocab'.format(t))
self.seg_token_ids = set(seg_token_ids)
def permute_sentences(self, source, full_stops, p=1.0):
# Tokens that are full stops, where the previous token is not
sentence_ends = (full_stops[1:] * ~full_stops[:-1]).nonzero(as_tuple=False) + 2
result = source.clone()
num_sentences = sentence_ends.size(0)
num_to_permute = math.ceil((num_sentences * 2 * p) / 2.0)
substitutions = torch.randperm(num_sentences)[:num_to_permute]
ordering = torch.arange(0, num_sentences)
ordering[substitutions] = substitutions[torch.randperm(num_to_permute)]
# Ignore <bos> at start
index = 1
for i in ordering:
sentence = source[(sentence_ends[i - 1] if i > 0 else 1): sentence_ends[i]]
result[index: index + sentence.size(0)] = sentence
index += sentence.size(0)
return result
def __call__(self, samples):
'''
samples: 一个sample长这样{"text": "hello world"}
'''
model_inputs = []
for s in samples:
sentences = self.sentence_split.tokenize(s[self.content_key])
tokenized_sentences = [self.tokenizer.convert_tokens_to_ids(
self.tokenizer.tokenize(sent)) for sent in sentences]
if len(tokenized_sentences) == 0:
print('find empty sentence')
continue
tokens = [self.tokenizer.cls_token_id]
for sent in tokenized_sentences:
for t in sent:
tokens.append(t)
if tokens[-1] != self.tokenizer.sep_token_id:
tokens.append(self.tokenizer.sep_token_id)
if len(tokens) > self.max_seq_length:
# 找到最后的一句话,如果有的话,尽量保证最后一句话的完整
last_pos = self.max_seq_length - 1
for i in range(self.max_seq_length - 1, 0, -1):
if tokens[i-1] in self.seg_token_ids:
last_pos = i
break
tokens = tokens[:last_pos]
tokens.append(self.tokenizer.sep_token_id)
tokens = torch.LongTensor(tokens)
full_stops = torch.any(torch.stack([torch.eq(tokens, aelem).logical_or_(
torch.eq(tokens, aelem)) for aelem in self.seg_token_ids], dim=0), dim=0)
assert (self.max_seq_length -
tokens.shape[0]) >= 0, (tokens.size(), tokens[-1], self.max_seq_length)
source, target = tokens, tokens.clone()
if self.permute_sentence_ratio > 0.0:
source = self.permute_sentences(source, full_stops, self.permute_sentence_ratio)
if self.masked_lm_prob > 0.0:
mask_prob = self.masked_lm_prob * 2
max_predictions_per_seq = mask_prob * len(source)
(source, _, _, _, _) = create_masked_lm_predictions(
source.numpy(), self.vocab_id_list, self.vocab_id_to_token_dict, mask_prob,
self.tokenizer.cls_token_id, self.tokenizer.sep_token_id, self.tokenizer.mask_token_id,
max_predictions_per_seq, self.np_rng,
masking_style='bert', zh_tokenizer=self.zh_tokenizer)
# 合并[MASK] 因为这里用的是Bert的mask函数,Bert是按字mask的,
# 这里把连续的mask合并成一个MASK从而达到span mask的效果
span_mask_souce = []
for t in source:
# 如果是连续的多个mask,则跳过
if len(span_mask_souce) > 0 \
and t is self.tokenizer.mask_token_id \
and span_mask_souce[-1] is self.tokenizer.mask_token_id:
continue
span_mask_souce.append(t)
source = torch.LongTensor(span_mask_souce)
assert (source >= 0).all()
# assert (source[1:-1] >= 1).all(), source
assert (source <= self.tokenizer.vocab_size).all()
assert source[0] == self.tokenizer.cls_token_id
assert source[-1] == self.tokenizer.sep_token_id
prev_output_tokens = torch.zeros_like(target)
# match the preprocessing in fairseq
prev_output_tokens[0] = self.tokenizer.sep_token_id
prev_output_tokens[1:] = target[:-1]
source_ = torch.full((self.max_seq_length,),
self.tokenizer.pad_token_id, dtype=torch.long)
source_[:source.shape[0]] = source
target_ = torch.full((self.max_seq_length,), -100, dtype=torch.long)
target_[:target.shape[0]] = target
prev_output_tokens_ = torch.full(
(self.max_seq_length,), self.tokenizer.pad_token_id, dtype=torch.long)
prev_output_tokens_[:prev_output_tokens.shape[0]] = prev_output_tokens
attention_mask = torch.full((self.max_seq_length,), 0, dtype=torch.long)
attention_mask[:source.shape[0]] = 1
model_inputs.append({
"input_ids": source_,
"labels": target_,
"decoder_input_ids": prev_output_tokens_,
"attention_mask": attention_mask,
})
return default_collate(model_inputs)
class RandengBart(LightningModule):
@staticmethod
def add_module_specific_args(parent_parser):
parser = parent_parser.add_argument_group('Randeng BART')
parser.add_argument('--masked_lm_prob', type=float, default=0.15)
parser.add_argument('--max_seq_length', type=int, default=512)
parser.add_argument('--sample_content_key', type=str, default='text')
parser.add_argument('--permute_sentence_ratio', type=str, default=1.0)
return parent_parser
def __init__(self, args, tokenizer, **kwargs) -> None:
super().__init__()
self.save_hyperparameters(args)
config = BartConfig.from_pretrained(args.model_path)
self.model = BartForConditionalGeneration(config)
self.tokenizer = tokenizer
def setup(self, stage) -> None:
if stage == 'fit':
self.total_steps = get_total_steps(self.trainer, self.hparams)
def configure_optimizers(self):
return configure_optimizers(self)
def detokenize(self, token_ids):
toks = self.tokenizer.convert_ids_to_tokens(token_ids)
return self.tokenizer.convert_tokens_to_string(toks)
def training_step(self, batch, batch_idx):
if self.trainer.global_rank == 0:
global SHOW_DATA
if not SHOW_DATA:
SHOW_DATA = True
print('source: {}'.format(batch['input_ids'][0]))
print('target: {}'.format(batch['labels'][0]))
print('decoder source: {}'.format(batch['decoder_input_ids'][0]))
print('source: {}'.format(self.detokenize(batch['input_ids'][0])))
print('decoder source: {}'.format(self.detokenize(batch['decoder_input_ids'][0])))
label_idx = batch['labels'][0] != -100
print('target: {}'.format(self.detokenize(
batch['labels'][0][label_idx])))
output = self.model(**batch)
acc = self.comput_metrix(output.logits, batch['labels'])
self.log('train_loss', output.loss, sync_dist=True)
self.log('train_acc', acc, sync_dist=True)
return output.loss
def comput_metrix(self, logits, labels):
label_idx = labels != -100
labels = labels[label_idx]
logits = logits[label_idx].view(-1, logits.size(-1))
y_pred = torch.argmax(logits, dim=-1)
y_pred = y_pred.view(size=(-1,))
y_true = labels.view(size=(-1,)).float()
corr = torch.eq(y_pred, y_true)
acc = torch.sum(corr.float())/labels.shape[0]
return acc
def validation_step(self, batch, batch_idx):
output = self.model(**batch)
acc = self.comput_metrix(output.logits, batch['labels'])
self.log('val_loss', output.loss, sync_dist=True)
self.log('val_acc', acc, sync_dist=True)
def on_load_checkpoint(self, checkpoint) -> None:
# 兼容低版本lightning,低版本lightning从ckpt起来时steps数会被重置为0
global_step_offset = checkpoint["global_step"]
if 'global_samples' in checkpoint:
self.consumed_samples = checkpoint['global_samples']
self.trainer.fit_loop.epoch_loop._batches_that_stepped = global_step_offset
if __name__ == '__main__':
args_parser = argparse.ArgumentParser()
args_parser = add_module_args(args_parser)
args_parser = UniversalDataModule.add_data_specific_args(args_parser)
args_parser = Trainer.add_argparse_args(args_parser)
args_parser = RandengBart.add_module_specific_args(args_parser)
args_parser = UniversalCheckpoint.add_argparse_args(args_parser)
args = args_parser.parse_args()
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
collator = BartCollator(
tokenizer=tokenizer,
max_seq_length=args.max_seq_length,
masked_lm_prob=args.masked_lm_prob,
content_key=args.sample_content_key,
permute_sentence_ratio=args.permute_sentence_ratio,
)
# 准备一些额外参数
collator.setup()
data_module = UniversalDataModule(tokenizer=tokenizer, args=args, collate_fn=collator)
module = RandengBart(args, tokenizer=tokenizer)
lr_monitor = LearningRateMonitor(logging_interval='step')
checkpoint_callback = UniversalCheckpoint(args)
# 做兼容,如果目录不存在的话把这个参数去掉,不然会报错
if args.load_ckpt_path is not None and \
not os.path.exists(args.load_ckpt_path):
print('--------warning no checkpoint found--------, remove args')
args.load_ckpt_path = None
trainer = Trainer.from_argparse_args(args,
callbacks=[
lr_monitor,
checkpoint_callback])
trainer.fit(module, data_module, ckpt_path=args.load_ckpt_path)
|