File size: 10,676 Bytes
8ebda9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
from data.bert_dataloader.load import BertDataModule
from transformers import (
    BertTokenizer,
    BertConfig,
    BertForPreTraining,
    BertModel,
    BertForMaskedLM
)
from pytorch_lightning import (
    LightningDataModule,
    LightningModule,
    loggers,
    Trainer,
)
from pytorch_lightning.callbacks import (
    ModelCheckpoint,
    LearningRateMonitor,
)
from typing import Optional
from torch.utils.data import DataLoader
from transformers.optimization import get_linear_schedule_with_warmup
import argparse
import sys
import torch
import os
import re
import jieba
import numpy as np

# 如果没有安装fengshen模块,请把Fengshenbang-LM/fengshen加入到系统环境变量
sys.path.insert(0, '../../../fengshen')

os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'


class DataCollate(object):

    def __init__(self, tokenizer, max_length, mask_rate=0.15, max_ngram=3, if_padding=True) -> None:
        self.tokenizer = tokenizer
        self.max_length = max_length
        self.word_cuter = jieba.cut
        self.vocab_length = len(tokenizer)
        self.mask_rate = mask_rate
        self.ignore_labels = -100
        self.ngrams = np.arange(1, max_ngram + 1, dtype=np.int64)
        pvals = 1. / np.arange(1, max_ngram + 1)
        pvals /= pvals.sum(keepdims=True)  # p(n) = 1/n / sigma(1/k)
        self.pvals = pvals
        self.padding = if_padding

    def token_process(self, token_id):
        rand = np.random.random()
        if rand <= 0.8:
            return self.tokenizer.mask_token_id
        elif rand <= 0.9:
            return token_id
        else:
            return np.random.randint(1, self.vocab_length)

    def __call__(self, samples):
        input_ids = []
        attention_mask = []
        token_type_ids = []
        batch_labels = []
        # print('^-^ batch size :',len(samples))
        for sample in samples:
            word_list = list(self.word_cuter(sample['text']))
            mask_ids, labels = [], []

            record = []
            for i in range(len(word_list)):
                rands = np.random.random()
                if i in record:
                    continue
                word = word_list[i]
                if rands > self.mask_rate and len(word) < 4:
                    word = word_list[i]
                    word_encode = tokenizer.encode(word, add_special_tokens=False)
                    for token in word_encode:
                        mask_ids.append(token)
                        labels.append(self.ignore_labels)
                    record.append(i)
                else:
                    n = np.random.choice(self.ngrams, p=self.pvals)
                    for index in range(n):
                        ind = index + i
                        if ind in record or ind >= len(word_list):
                            continue
                        record.append(ind)
                        word = word_list[ind]
                        word_encode = tokenizer.encode(word, add_special_tokens=False)
                        for token in word_encode:
                            mask_ids.append(self.token_process(token))
                            labels.append(token)
            if self.padding:
                if len(mask_ids) > self.max_length:
                    input_ids.append(mask_ids[:self.max_length])
                    batch_labels.append(labels[:self.max_length])
                else:
                    lenght = len(mask_ids)
                    mask_ids.extend([0]*(self.max_length-lenght))
                    labels.extend([-100]*(self.max_length-lenght))
                    input_ids.append(mask_ids)
                    batch_labels.append(labels)
            attention_mask.append([1]*self.max_length)
            token_type_ids.append([0]*self.max_length)

        #     print('sentence:',sample['text'])
        #     print('input_ids:',mask_ids)
        #     print('decode inputids:',self.tokenizer.decode(mask_ids))
        #     print('labels',labels)
        #     print('decode labels:',self.tokenizer.decode(labels))
        #     print('*'*20)
        return {
            'input_ids': torch.tensor(input_ids),
            'labels': torch.tensor(batch_labels),
            'attention_mask': torch.tensor(attention_mask),
            'token_type_ids': torch.tensor(token_type_ids)
        }


class Bert(LightningModule):
    @staticmethod
    def add_module_specific_args(args_parser):
        parser = args_parser.add_argument_group('Bert')
        parser.add_argument('--model_path', type=str, default='')
        parser.add_argument('--learning_rate', default=1e-5, type=float)
        parser.add_argument('--weight_decay', default=0.1, type=float)
        parser.add_argument('--warmup', default=0.01, type=float)
        return args_parser

    def __init__(self, args):
        super().__init__()
        self.save_hyperparameters(args)
        self.bertconfig = BertConfig.from_pretrained(args.model_path)
        # self.model = BertForPreTraining(self.bertconfig)
        self.model = BertForMaskedLM(self.bertconfig)

    def setup(self, stage) -> None:
        if stage == 'fit':
            train_loader = self.trainer._data_connector._train_dataloader_source.dataloader()

            # Calculate total steps
            tb_size = self.hparams.train_batchsize * max(1, self.trainer.gpus)
            ab_size = self.trainer.accumulate_grad_batches * float(self.trainer.max_epochs)
            self.total_steps = (len(train_loader.dataset) // tb_size) // ab_size

    def configure_optimizers(self):

        no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
        paras = list(
            filter(lambda p: p[1].requires_grad, self.named_parameters()))
        paras = [{
            'params':
            [p for n, p in paras if not any(nd in n for nd in no_decay)],
            'weight_decay': self.hparams.weight_decay
        }, {
            'params': [p for n, p in paras if any(nd in n for nd in no_decay)],
            'weight_decay': 0.0
        }]
        optimizer = torch.optim.AdamW(paras, lr=self.hparams.learning_rate)
        scheduler = get_linear_schedule_with_warmup(
            optimizer, int(self.total_steps * self.hparams.warmup),
            self.total_steps)

        return [{
            'optimizer': optimizer,
            'lr_scheduler': {
                'scheduler': scheduler,
                'interval': 'step',
                'frequency': 1
            }
        }]

    def training_step(self, batch, batch_idx):
        output = self.model(**batch)
        # print(output)
        self.log('train_loss', output.loss)
        return output.loss

    def comput_metrix(self, logits, labels):
        ones = torch.ones_like(labels)
        zero = torch.zeros_like(labels)
        mask = torch.where(labels < 0, zero, ones)
        mask = mask.view(size=(-1,)).float()
        # y_true=labels.view(size=(-1,)).float()

        y_pred = torch.argmax(logits, dim=-1)
        y_pred = y_pred.view(size=(-1,))
        y_true = labels.view(size=(-1,)).float()
        corr = torch.eq(y_pred, y_true)
        corr = torch.multiply(corr.float(), mask)
        acc = torch.sum(corr.float()) / torch.sum(mask)
        return acc

    def validation_step(self, batch, batch_idx):
        output = self.model(**batch)
        # print(output)
        acc = self.comput_metrix(output.logits, batch['labels'])
        print('val_loss ', output.loss)
        self.log('val_loss', output.loss)
        self.log('val_acc', acc)
        # pass

    def predict_step(self, batch, batch_idx):
        output = self.model(**batch)
        return output.prediction_logits


class CustomCKPT:
    @staticmethod
    def add_argparse_args(parent_args):
        parser = parent_args.add_argument_group('ckpt call back')

        parser.add_argument('--monitor', default='train_loss', type=str)
        parser.add_argument('--mode', default='min', type=str)
        parser.add_argument('--dirpath', default='./ckpt/', type=str)
        parser.add_argument(
            '--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str)
        parser.add_argument('--save_last', action='store_true', default=True)
        parser.add_argument('--save_top_k', default=3, type=float)
        parser.add_argument('--every_n_train_steps', default=100, type=float)
        parser.add_argument('--save_weights_only', action='store_true', default=False)

        return parent_args

    def __init__(self, args):
        self.callbacks = ModelCheckpoint(monitor=args.monitor,
                                         save_top_k=args.save_top_k,
                                         mode=args.mode,
                                         every_n_train_steps=args.every_n_train_steps,
                                         save_weights_only=args.save_weights_only,
                                         dirpath=args.dirpath,
                                         filename=args.filename,
                                         save_last=args.save_last)


if __name__ == '__main__':
    args_parser = argparse.ArgumentParser()
    args_parser = BertDataModule.add_data_specific_args(args_parser)
    args_parser = Trainer.add_argparse_args(args_parser)
    args_parser = Bert.add_module_specific_args(args_parser)
    args_parser = CustomCKPT.add_argparse_args(args_parser)
    args_parser.add_argument('--deepspeed')
    args_parser.add_argument('--seq_max_length')

    args = args_parser.parse_args()

    tokenizer = BertTokenizer.from_pretrained(args.model_path)
    collate_fn = DataCollate(tokenizer, 512)
    data_module = BertDataModule(tokenizer=tokenizer, args=args, collate_fn=collate_fn)

    print('data load complete')

    model = Bert(args)
    print('model load complete')

    lr_monitor = LearningRateMonitor(logging_interval='step')
    logger = loggers.TensorBoardLogger(save_dir=os.path.join(
        args.default_root_dir, 'logs/'),
        name=os.path.basename(os.path.dirname(args.model_path)))
    checkpoint_callback = CustomCKPT(args).callbacks

    if args.resume_from_checkpoint is not None and \
            not os.path.exists(args.resume_from_checkpoint):
        print('--------warning no checkpoint found--------, remove args')
        del args.resume_from_checkpoint

    # autotuning
    if args.deepspeed is not None:
        os.environ['PL_DEEPSPEED_CONFIG_PATH'] = args.deepspeed

    trainer = Trainer.from_argparse_args(args, logger=logger,
                                         callbacks=[
                                             lr_monitor,
                                             checkpoint_callback])

    trainer.fit(model, data_module)