File size: 10,676 Bytes
8ebda9e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
from data.bert_dataloader.load import BertDataModule
from transformers import (
BertTokenizer,
BertConfig,
BertForPreTraining,
BertModel,
BertForMaskedLM
)
from pytorch_lightning import (
LightningDataModule,
LightningModule,
loggers,
Trainer,
)
from pytorch_lightning.callbacks import (
ModelCheckpoint,
LearningRateMonitor,
)
from typing import Optional
from torch.utils.data import DataLoader
from transformers.optimization import get_linear_schedule_with_warmup
import argparse
import sys
import torch
import os
import re
import jieba
import numpy as np
# 如果没有安装fengshen模块,请把Fengshenbang-LM/fengshen加入到系统环境变量
sys.path.insert(0, '../../../fengshen')
os.environ["CUDA_VISIBLE_DEVICES"] = '0,1'
class DataCollate(object):
def __init__(self, tokenizer, max_length, mask_rate=0.15, max_ngram=3, if_padding=True) -> None:
self.tokenizer = tokenizer
self.max_length = max_length
self.word_cuter = jieba.cut
self.vocab_length = len(tokenizer)
self.mask_rate = mask_rate
self.ignore_labels = -100
self.ngrams = np.arange(1, max_ngram + 1, dtype=np.int64)
pvals = 1. / np.arange(1, max_ngram + 1)
pvals /= pvals.sum(keepdims=True) # p(n) = 1/n / sigma(1/k)
self.pvals = pvals
self.padding = if_padding
def token_process(self, token_id):
rand = np.random.random()
if rand <= 0.8:
return self.tokenizer.mask_token_id
elif rand <= 0.9:
return token_id
else:
return np.random.randint(1, self.vocab_length)
def __call__(self, samples):
input_ids = []
attention_mask = []
token_type_ids = []
batch_labels = []
# print('^-^ batch size :',len(samples))
for sample in samples:
word_list = list(self.word_cuter(sample['text']))
mask_ids, labels = [], []
record = []
for i in range(len(word_list)):
rands = np.random.random()
if i in record:
continue
word = word_list[i]
if rands > self.mask_rate and len(word) < 4:
word = word_list[i]
word_encode = tokenizer.encode(word, add_special_tokens=False)
for token in word_encode:
mask_ids.append(token)
labels.append(self.ignore_labels)
record.append(i)
else:
n = np.random.choice(self.ngrams, p=self.pvals)
for index in range(n):
ind = index + i
if ind in record or ind >= len(word_list):
continue
record.append(ind)
word = word_list[ind]
word_encode = tokenizer.encode(word, add_special_tokens=False)
for token in word_encode:
mask_ids.append(self.token_process(token))
labels.append(token)
if self.padding:
if len(mask_ids) > self.max_length:
input_ids.append(mask_ids[:self.max_length])
batch_labels.append(labels[:self.max_length])
else:
lenght = len(mask_ids)
mask_ids.extend([0]*(self.max_length-lenght))
labels.extend([-100]*(self.max_length-lenght))
input_ids.append(mask_ids)
batch_labels.append(labels)
attention_mask.append([1]*self.max_length)
token_type_ids.append([0]*self.max_length)
# print('sentence:',sample['text'])
# print('input_ids:',mask_ids)
# print('decode inputids:',self.tokenizer.decode(mask_ids))
# print('labels',labels)
# print('decode labels:',self.tokenizer.decode(labels))
# print('*'*20)
return {
'input_ids': torch.tensor(input_ids),
'labels': torch.tensor(batch_labels),
'attention_mask': torch.tensor(attention_mask),
'token_type_ids': torch.tensor(token_type_ids)
}
class Bert(LightningModule):
@staticmethod
def add_module_specific_args(args_parser):
parser = args_parser.add_argument_group('Bert')
parser.add_argument('--model_path', type=str, default='')
parser.add_argument('--learning_rate', default=1e-5, type=float)
parser.add_argument('--weight_decay', default=0.1, type=float)
parser.add_argument('--warmup', default=0.01, type=float)
return args_parser
def __init__(self, args):
super().__init__()
self.save_hyperparameters(args)
self.bertconfig = BertConfig.from_pretrained(args.model_path)
# self.model = BertForPreTraining(self.bertconfig)
self.model = BertForMaskedLM(self.bertconfig)
def setup(self, stage) -> None:
if stage == 'fit':
train_loader = self.trainer._data_connector._train_dataloader_source.dataloader()
# Calculate total steps
tb_size = self.hparams.train_batchsize * max(1, self.trainer.gpus)
ab_size = self.trainer.accumulate_grad_batches * float(self.trainer.max_epochs)
self.total_steps = (len(train_loader.dataset) // tb_size) // ab_size
def configure_optimizers(self):
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
paras = list(
filter(lambda p: p[1].requires_grad, self.named_parameters()))
paras = [{
'params':
[p for n, p in paras if not any(nd in n for nd in no_decay)],
'weight_decay': self.hparams.weight_decay
}, {
'params': [p for n, p in paras if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}]
optimizer = torch.optim.AdamW(paras, lr=self.hparams.learning_rate)
scheduler = get_linear_schedule_with_warmup(
optimizer, int(self.total_steps * self.hparams.warmup),
self.total_steps)
return [{
'optimizer': optimizer,
'lr_scheduler': {
'scheduler': scheduler,
'interval': 'step',
'frequency': 1
}
}]
def training_step(self, batch, batch_idx):
output = self.model(**batch)
# print(output)
self.log('train_loss', output.loss)
return output.loss
def comput_metrix(self, logits, labels):
ones = torch.ones_like(labels)
zero = torch.zeros_like(labels)
mask = torch.where(labels < 0, zero, ones)
mask = mask.view(size=(-1,)).float()
# y_true=labels.view(size=(-1,)).float()
y_pred = torch.argmax(logits, dim=-1)
y_pred = y_pred.view(size=(-1,))
y_true = labels.view(size=(-1,)).float()
corr = torch.eq(y_pred, y_true)
corr = torch.multiply(corr.float(), mask)
acc = torch.sum(corr.float()) / torch.sum(mask)
return acc
def validation_step(self, batch, batch_idx):
output = self.model(**batch)
# print(output)
acc = self.comput_metrix(output.logits, batch['labels'])
print('val_loss ', output.loss)
self.log('val_loss', output.loss)
self.log('val_acc', acc)
# pass
def predict_step(self, batch, batch_idx):
output = self.model(**batch)
return output.prediction_logits
class CustomCKPT:
@staticmethod
def add_argparse_args(parent_args):
parser = parent_args.add_argument_group('ckpt call back')
parser.add_argument('--monitor', default='train_loss', type=str)
parser.add_argument('--mode', default='min', type=str)
parser.add_argument('--dirpath', default='./ckpt/', type=str)
parser.add_argument(
'--filename', default='model-{epoch:02d}-{train_loss:.4f}', type=str)
parser.add_argument('--save_last', action='store_true', default=True)
parser.add_argument('--save_top_k', default=3, type=float)
parser.add_argument('--every_n_train_steps', default=100, type=float)
parser.add_argument('--save_weights_only', action='store_true', default=False)
return parent_args
def __init__(self, args):
self.callbacks = ModelCheckpoint(monitor=args.monitor,
save_top_k=args.save_top_k,
mode=args.mode,
every_n_train_steps=args.every_n_train_steps,
save_weights_only=args.save_weights_only,
dirpath=args.dirpath,
filename=args.filename,
save_last=args.save_last)
if __name__ == '__main__':
args_parser = argparse.ArgumentParser()
args_parser = BertDataModule.add_data_specific_args(args_parser)
args_parser = Trainer.add_argparse_args(args_parser)
args_parser = Bert.add_module_specific_args(args_parser)
args_parser = CustomCKPT.add_argparse_args(args_parser)
args_parser.add_argument('--deepspeed')
args_parser.add_argument('--seq_max_length')
args = args_parser.parse_args()
tokenizer = BertTokenizer.from_pretrained(args.model_path)
collate_fn = DataCollate(tokenizer, 512)
data_module = BertDataModule(tokenizer=tokenizer, args=args, collate_fn=collate_fn)
print('data load complete')
model = Bert(args)
print('model load complete')
lr_monitor = LearningRateMonitor(logging_interval='step')
logger = loggers.TensorBoardLogger(save_dir=os.path.join(
args.default_root_dir, 'logs/'),
name=os.path.basename(os.path.dirname(args.model_path)))
checkpoint_callback = CustomCKPT(args).callbacks
if args.resume_from_checkpoint is not None and \
not os.path.exists(args.resume_from_checkpoint):
print('--------warning no checkpoint found--------, remove args')
del args.resume_from_checkpoint
# autotuning
if args.deepspeed is not None:
os.environ['PL_DEEPSPEED_CONFIG_PATH'] = args.deepspeed
trainer = Trainer.from_argparse_args(args, logger=logger,
callbacks=[
lr_monitor,
checkpoint_callback])
trainer.fit(model, data_module)
|